Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TỈ lệ cần chứng minh
<br class="Apple-interchange-newline"><div id="inner-editor"></div>2015a−2016b2015c−2016d =2016a+2017b2016c+2017d
Vì ab =cd ⇒ac =bd = 2015a2015c =2016b2016d =2016a2016c =2017b2017d
Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{a}{c}\)=\(\frac{2015a-2016b}{2015c-2016d}\)=\(\frac{2016a+2017b}{2016c+2017d}\)
ta có n-7 chia hết n-5
suy ra n-7= (n-5)-2
vì n-5 chia hết cho n-5 để n-7 chia hết cho n-5 thì 2 chia hết cho n-5
suy ra n-5 thuộc ước của 2
mâ Ư(2) =( 1;-1;2;-2)
suy ra n-5 thuộc ( 1;-1;-2;2)
suy ra n thuộc(6;4;7;3)
vậy......
để N \(\frac{n-7}{n-5}\)là một số ngyên
=> (n-7) chia hết cho (n-5)
mà (n-7)<(n-5)
=> không có giá trị N thỏa mãn
Trả lời
x:(1/2+1/3+1/6)=2019
x:6/6 =2019
x:1 =2019
=>x =2019.1
=>x =2019
Học tốt !
x : (\(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{6}\)) = 2019
x : 1 = 2019
x = 2019
Theo bđt cô si ta có : \(x+y\ge2\sqrt{xy}\) <=> \(1\ge2\sqrt{xy}\)
=> \(\sqrt{xy}\le\frac{1}{2}\) <=> \(\sqrt{\frac{1}{xy}}\ge2\)
Theo bđt cô si : \(P=\frac{a^2}{x}+\frac{b^2}{y}\ge2\sqrt{\frac{a^2b^2}{xy}}=2ab\sqrt{\frac{1}{xy}}=2ab.2=4ab\)
Vậy giá trị nhỏ nhất của P=4ab khi x=y=1/2
Để \(M\in Z\)thì 7 chia hết cho x - 1
=> \(x-1\in\left\{1;-1;7;-7\right\}\)
=> \(x\in\left\{2;0;8;-6\right\}\)
Vậy \(x\in\left\{2;0;8;-6\right\}\)thỏa mãn đề bài
Để M nguyên thì 7 chia hết cho x-1
Vậy x-1 thuộc:
+-1;+-7.
=> x thuộc:
0;2;8;-6.
Chúc em học tốt^^
a) \(\left|x+3\right|:\left(-15\right)=\frac{1}{3}\)
\(\left|x+3\right|=-5\)
=> không tìm được x
b) \(\left|4,5-2x\right|.\left(-1\frac{4}{7}\right)=-\frac{11}{14}\)
\(\left|4,5-2x\right|=2\)
TH1: 4,5 - 2x = 2
2x = 2,5
x = 1,25
TH2: 4,5 - 2x = -2
2x = 6,5
x = 3,25
KL:...
thử lên mag tra xem có bài nào tương tự ko
chờ ai trả lời lâu lắm
a) \(x^2-16=0\)
\(\Leftrightarrow\)\(\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
Vậy...
b) \(x^3+\frac{1}{125}=0\)
\(\Leftrightarrow\)\(\left(x+\frac{1}{5}\right)\left(x^2-\frac{1}{5}x+\frac{1}{25}\right)=0\)
\(\Leftrightarrow\)\(x+\frac{1}{5}=0\)
\(\Leftrightarrow\)\(x=-\frac{1}{5}\)
Vậy...