Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Để chia hết cho 5 thì abc có dạng ab0 hoặc ab5
Trường hợp 1: abc có dạng ab0.
Nếu abc có dạng ab0 thì a+b phải bằng 9. (không thể bằng 18 hay 27,36,... vì a,b là chữ số và a=b+1)
Vì a=b+1 nên abc lúc này có dạng 540.
TH2: abc có dạng ab5.
Vì abc có dạng ab5 nên a+b+5=18 hoặc 9.
Nếu a+b+5=18
=>a+b=13 và vì a=b +1 nên lúc này abc có dạng 765(7+6=13)
Nếu a+b+5=9 =>a+b = 4 nhưng vì a=b+1 nên không tồn tại abc trong trường hợp này.
Vậy abc=540 hoặc abc=765.
Vì abc chia hết cho 5 nên c=0 hoặc c=5
Để abc chia hết cho 9 thì a+b+c chia hết cho 9 hay 2b+1+c chia hết cho 9
Nếu c=0 thì => 2b+1+0 chia hết cho 9
=>2b+1 chia hết cho 9
=>2b+1=9 vè 2b+1 là số lẻ
=> b bằng 4
=>a=4+1=5
=> abc=540
Nếu c=5 thì 2b+1+5 chia hết cho 9
=> 2b+6 chia hết cho 9
=>2b+6 là số chẵn nên 2b+6=18
=>2b=12
=>b=6
=>a=7
=>abc=765
Vậy abc=765 hoặc abc=540
bai1
vi ab1 chia hết cho 7 mà a+b=6 ta có các cặp sau :
1+5 : 5+1 :3+3 ; 2+4 ; 4+2 sau đó ban thu chọn nhé để ra kết quả đúng
bai 2
c = 5 vì abc chia hết cho 45
tự làm nhé
Bài 1 nếu chia hết cho 3 thì 7a5b1 thì \(\frac{7a5b1}{3}=\frac{\left(7+5+1+a+b\right)}{3}=\frac{13+\left(a+b\right)}{3}\)
\(\Rightarrow a+b=2;5;8\)
\(a+b=2\left(loại\right)\)(hiệu k thể > hơn tổng)
\(a+b=5\left(loại\right)\)(vì để tìm \(\frac{b:\left(5-4\right)}{2}=0,5\)mà a và b là số tự nhiên =>a+b=8
\(a=\frac{8+4}{2}=6\)\(b=6-4=2\)
Vậy số cần tìm là 76521
Để chia hết cho 5 thì abc phải có dạng là ab5 hoặc ab0
Trường hợp 1 : Nếu abc có dạng ab0
Nếu abc có dạng ab0 thì a + b = 9 ( không thế bằng 18 hay 27 và 36 ,... vì ab là a = b + 1 )
Vì a = b + 1 nên ab0 có dạng là 540
Trường hớp 2 : Nếu abc có dạng ab5
Nếu abc có dạng ab0 nên a + b + 5 = 18 hoặc 9
Nếu a + b + 5 = 18
\(\Rightarrow\)a + b = 13 vì a = b + 1 nên lúc này ab5 có dạng là 765 ( 7 + 6 = 13 )
Nếu a + b + 5 = 9 \(\Rightarrow\)a + b = 4 nhưng vì a = b + 1 nên không tồn tại abc trong trường hợp này
Vậy số abc là 540 và 765
~~~ nha ~~~
abc chia hết cho 5 =>c=0 hoặc c=5
Với c=0 ta có ab0 chia hết cho 9 =>a+b chia hết cho 9
=>b+b+1 chia hết cho 9
=>2b+1 chia hết cho 9
Ta có \(2b+1\le19\)
=>2b+1=9 hoặc 2b+1=19
=>b=4 hoặc b=9
=>a=5 hoặc a=10, trường hợp a=10 loại
Với c=0, ta có số 540
Với c=5 => ab5 chia hết cho 9
=>a+b+5 chia hết cho 9
=>b+1+b+5 chia hết cho 9
=>2b+6 chia hết cho 9 =>2(b+3) chia hết cho 9 =>b+3 chia hết cho 9
=>b+3=9 =>b=6
=>a=7
Với c=5, ta có số 765
Vậy ta có 2 số là 540 và 765