Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Z= a+bi và \(\overline{Z}\) =a-bi → (1+2i).(a+bi) +(1+2a-2bi)i =1+3i
→a+bi +2ai -2b +i +2ai +2b=1+3i (i2= -1)
→ a+ (4a+b+1)i = 1+3i
→\(\begin{cases}a=1\\4a+b+1=3\end{cases}\) → a=1 , b=-2 → modum : \(\left|Z\right|\)=\(\sqrt{5}\)
\(\left(1-2i\right)z+\frac{1-3i}{1+i}=2-i\Leftrightarrow z=\frac{1}{5}+\frac{7}{5}i\)
\(\Rightarrow\left|z\right|=\sqrt{2}\)
\(f\left(x\right)=\left(\sqrt[3]{x}+\frac{2}{\sqrt{x}}\right)^{15}\) \(=\Sigma_{k=0}^{15}C^k_{15}x^{\frac{15-k}{3}}.x^{\frac{-k}{2}}.2^k\)
\(=\Sigma_{k=0}^{15}C^k_{15}.x^{5-\frac{5k}{2}}.2^k\)
\(\left(0\le k\le15,\right)k\in Z\)
Hệ số không chứa x ứng với k thỏa mãn : \(5-\frac{5k}{6}=0\Leftrightarrow k=6\) => Hệ số 320320
Câu 1:
Gọi \(A\left(1;-1\right)\) và \(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)
Gọi \(M\left(-2;-1\right)\) và \(N\left(3;-2\right)\) và \(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN
Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d
Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng
Phương trình đường thẳng d' qua M và vuông góc d có dạng:
\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)
\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)
Bài 2:
Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)
\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I
\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)
Câu 3:
\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)
\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)
Câu 4
\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)
\(=5m+3-\left(m^2+m-6\right)i\)
Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
Câu 5:
\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)
Câu 6:
\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)
\(\Rightarrow b=12\)
Câu 7:
\(w=\left(1-i\right)^2z\)
Lấy môđun 2 vế:
\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)
Câu 8:
\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)
\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)
Đặt \(z=x+yi\), ta được hệ phương trình :
\(\left\{{}\begin{matrix}x^2+\left(y-2\right)^2=x^2+y^2\\x^2+\left(y-1\right)^2=\left(x-1\right)^2+y^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=1\\x=y\end{matrix}\right.\) \(\Rightarrow x=1,y=1\)
Vậy \(z=1+i\)
\(z+1+2i=\left(1+i\right)\left|z\right|=\left|z\right|+i.\left|z\right|\)
\(\Leftrightarrow z=\left|z\right|-1+\left(\left|z\right|-2\right)i\)
Lấy mođun 2 vế:
\(\Rightarrow\left|z\right|=\sqrt{\left(\left|z\right|-1\right)^2+\left(\left|z\right|-2\right)^2}\)
\(\Leftrightarrow\left|z\right|^2=\left|z\right|^2-2\left|z\right|+1+\left|z\right|^2-4\left|z\right|+4\)
\(\Leftrightarrow\left|z\right|^2-6\left|z\right|+5=0\Rightarrow\left[{}\begin{matrix}\left|z\right|=1\left(l\right)\\\left|z\right|=5\end{matrix}\right.\)
\(\Rightarrow a^2+b^2=5\)
Không đủ dữ kiện để tính \(P=a+b\)
Đáp án A
Đặt z = a + bi;
Mặt khác là số thực, suy ra