Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
100\(\le\)\(n^2\)-1=\(\overline{abc}\)\(\le\)999
\(\Rightarrow\)100<101\(\le\)\(n^2\)=\(\overline{abc}\)+1\(\le\)1000
\(\Rightarrow\)\(10^2\)<\(n^2\)<\(32^2\)\(\Rightarrow\)10<n<32
\(\overline{abc}\)-\(\overline{cba}\)=\(n^2\)-1-\(n^2\)+4n-4
\(\overline{abc}\)-\(\overline{cba}\)=(\(n^2\)-\(n^2\))+4n-1-4
\(\overline{abc}\)-\(\overline{cba}\)=0+4n-5
(100.a+10.b+c)-(100c+10b+a)=4n-5
99a-99c=4n-5
\(\Rightarrow\)4n-5\(⋮\)99(1)
Vì 10<n<32\(\Rightarrow\)35<4n<123(2)
Từ (1) và(2) \(\Rightarrow\)4n-5=99
\(\Rightarrow\)n=99+5 :4 =26
\(\overline{abc}\)=\(26^2\)-1
\(\overline{abc}\)=675
\(\overline{cba}\)=576
\(\overline{15abc0}+\overline{abc}=1010\)
\(\left(150000+\overline{abc0}\right):\overline{abc}=1010\)
\(150000:\overline{abc}+\overline{abc0}:\overline{abc}=1010\)
\(150000:\overline{abc}+10=1010\)
\(150000:\overline{abc}=1010-10\)
\(150000:\overline{abc}=1000\)
\(\overline{abc}=150000:1000\)
\(\overline{abc}=150\)
\(\overline{15abc0}\div\overline{abc}=1010\)
\(\Leftrightarrow\overline{15abc0}=1010\times\overline{abc}\)
\(\Leftrightarrow150.000+\overline{abc0}=\overline{abc}\times1010\)
\(\Leftrightarrow150.000+\overline{abc}\times10=\overline{abc}\times1010\)
\(\Leftrightarrow150.000=\overline{abc}\times1010-\overline{abc}\times10\)
\(\Leftrightarrow150.000=\overline{abc}\times1000\)
\(\Leftrightarrow\overline{abc}=\frac{150.000}{1000}\)
\(\Leftrightarrow\overline{abc}=150\)
HOK TOT
Ta có: \(\overline{abc}-\overline{cba}=495\)
\(\Rightarrow100a+10b+c-100c-10b-a=495\)
\(\Rightarrow99a-99c=495\)
\(\Rightarrow99.\left(a-c\right)=495\Rightarrow a-c=5\Rightarrow a=5+c\)
Mà \(b^2=\overline{ac}\Rightarrow b^2=10a+c\)
=> \(b^2=10.\left(5+c\right)+c=50+11c\)
Vì \(\overline{ac}\) có 2 chữ số nên:
b^2 < 100
Mà b^2 > 50
=> b^2 thuộc 64,81
b^2 = 64 => 11c = 14 (vô lí)
b^2 = 81 => 11c = 31 (vô lí)
Vậy không có abc thỏa mãn
a) \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)
\(=100100a+10010b+1001c\)
\(=1001\cdot\overline{abc}\)
\(=\overline{abc}\cdot7\cdot11\cdot13\)chia hết cho 11, 13
Đêm rồi không biết c/m chia hết cho 3 :)
b) \(\overline{aaa}=111\cdot a\)chia hết cho a
c) \(\overline{abc}=\overline{abc}\)nên \(\overline{abc}⋮\overline{abc}\)??? :)
sửa đề
\(a,\overline{abcabc}⋮7;11;13\)
=\(\overline{abc}.1000+\overline{abc}\)
=\(\overline{abc}\left(1000+1\right)\)
= \(\overline{abc}.1001\)
= \(\overline{abc}.7..11.13\)
=> \(\overline{abcabc}⋮7;11;13\)
\(b,\overline{aaa}:a=111\)
\(=>\overline{aaa}⋮a\)
\(c,\overline{abc}⋮\overline{abc}\)
Do \(\overline{abc}=\overline{abc}\)
=> \(\overline{abc}⋮\overline{abc}\)
a) Vì số chẵn là số chia hết cho 2 nên ta có:
\(\overline{abc}=\overline{ab}+\overline{bc}+\overline{ca}+\overline{ac}+\overline{cb}+\overline{ba}\)
\(=10a+b+10b+c+10c+a+10a+c+10c+b+10b+a\)
\(=\left(10a+10a+a+a\right)+\left(10b+10b+b+b\right)+\left(10c+10c+c+c\right)\)
\(=22a+22b+22c\)
\(=22\left(a+b+c\right)\)
Vì \(22.\left(a+b+c\right)⋮2\) nên \(\overline{abc}\) là số chẵn ( đpcm )
Vì \(22.\left(a+b+c\right)⋮11\) nên \(\overline{abc}⋮11\) ( đpcm )
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .
Theo bài ra ta có : abc - acb = 27 \(\left(0< a< 10\right);\left(0\le b;c< 10\right);\left(a;b;c\inℕ\right)\)
=> (100a + 10b + c) - (100a + 10c + b) = 27
=> 9b - 9c = 27
=> 9(b -c) = 27
=> b - c = 3 (1)
Để \(abc⋮2\Rightarrow c\in2k\left(k\inℕ\right)\left(2\right)\)
Để \(abc⋮5\Rightarrow\orbr{\begin{cases}c=5\\c=0\end{cases}\left(3\right)}\)
Từ (2) và (3) => c = 0
Thay c vào (1) ta có :
b - 0 = 3
=> b = 3
=> Số mới có dạng \(\overline{a30}\)
Để \(\overline{a30}⋮3\Rightarrow\left(a+3+0\right)⋮3\Rightarrow\left(a+3\right)⋮3\)
\(\Rightarrow a\in\left\{3;6;9\right\}\)
Vậy \(\overline{abc}\in\left\{930;630;330\right\}\)
Ta thấy: số chia hết cho cả 2 và 5 phải có tận cùng là 0
=> c = 0
\(\overline{ab0}-\overline{a0b}=27\)
0 - b = 7 => b = 3
Ta có: \(\overline{a30}-\overline{a03}=27\)
Mà ta thấy số chia hết cho 3 thì tổng các chữ số của nó = 3
=> 3 + 0 = 3
=> \(\overline{abc}\in\left\{330;630\right\}\)
Hội con 🐄 chúc bạn học tôt!!!