Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi số cần tìm là a
=> a = BCNN(2;3;4;5;7) + 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7
=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412
Vậy số cần tìm là 421
b) Gọi số cần tìm là a
=> a + 1 chia hết cho 2;3;4;5
=> a = BCNN(2;3;4;5) - 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> a = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59
Vậy số cần tìm là 59
a) Đặt n là số nhỏ nhất chia 5 dư 1, chia 7 dư 5
Ta có: n chia 5 dư 1 => n+9 chia hết cho 5 (1)
n chia 7 dư 5 => n+9 chia hết cho 7 (2)
Từ (1)(2) và n nhỏ nhất => n+9 \(\in\) BCNN(5;7)=35
n+9=35 => n=26
b) Đặt e là số tự nhiên nhỏ nhất chia 21 dư 2, chia 12 dư 5
Ta có : e chia 21 dư 2 => e+19 chia hết cho 21 (1)
e chia 12 dư 5 => e+19 chia hết cho 12 (2)
Từ (1)(2) và e nhỏ nhất => e+19 \(\in\) BCNN(21;12)=84
e+19=84 => e=65
Vì n không chia hết cho 35 nên n có dạng 35k + r (k, r thuộc N, r <35), trong="" đó="" r="" chia="" 5="" dư="" 1,="" chia="" 7="" dư="">
Số nhỏ hơn 35 chia cho 7 dư 5 là 5, 12, 19, 26, 33, trong đó chỉ có 26 chia cho 5 dư 1. Vậy r = 26.
Số nhỏ nhất có dạng 35k + 36 là 26.
N
Gọi số đó là x
Do x chia 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
=> (x - 1) chia hết 2
(x - 2) chia hết 3
(x - 3) chia hết 4
(x - 4) chia hết 5
(x - 5) chia hết 6
(x - 6) chia hết
=> (x + 1) chia hết cho cả 2, 3, 4, 5, 6, 7
=> (x + 1) là BC(2;3;4;5;6;7)
Mà x nhỏ nhất
=>( x+ 1) là BCNN(2;3;4;5;6;7) = 5.12.7 = 420 => x = 419
Nếu mình đúng thì các bạn k mình nhé
câu 1. \(7^{2n-4}=1\Leftrightarrow2n-4=0\Leftrightarrow n=2\)
câu .2
a. rõ ràng 2x-2 là số chẵn lớn hơn hoạc bằng -2 đồng thời nó là ước của 24 nên ta có
\(2x-2\in\left\{-2;2;4;6;12;24\right\}\Rightarrow x\in\left\{0,2,3,4,7,13\right\}\)
b. rõ ràng 2x+1 là số chẵn lớn hơn hoạc bằng 1 đồng thời nó là ước của 7 nên ta có
\(2x+1\in\left\{1,7\right\}\Rightarrow x\in\left\{0,3\right\}\)
c. ta có \(a+b=a-3+b-4+7\)
ta có a-3 và b-4 chia hết cho 5 còn 7 chia 5 dư 2
vậy a+b chia 5 dư 2..