K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:
$3x^2+4y^2+12x+3y+5=0$

$\Leftrightarrow 3(x^2+4x+4)+4y^2+3y-7=0$

$\Leftrightarrow 3(x+2)^2+(2y+\frac{3}{4})^2-\frac{121}{16}=0$

$\Leftrightarrow 3(x+2)^2=\frac{121}{16}-(2y+\frac{3}{4})^2\leq \frac{121}{16}$

$\Rightarrow (x+2)^2\leq \frac{121}{48}< 4$

$\Rightarrow -2< x+2< 2$

$\Rightarrow -4< x< 0$

$\Rightarrow x\in \left\{-3; -2; -1\right\}$

Đê đây bạn thay giá trị $x$ vào pt ban đầu để tìm $y$ thôi.

AH
Akai Haruma
Giáo viên
13 tháng 3 2022

Lời giải:

$y^2+2xy-3x-2=0$

$\Leftrightarrow y^2+2xy+x^2=x^2+3x+2$
$\Leftrightarrow (x+y)^2=(x+1)(x+2)$

Dễ thấy với mọi $x\in\mathbb{Z}$ thì $(x+1, x+2)=1$ nên để tích của chúng là scp thì $x+1, x+2$ cũng là scp

Đặt $x+1=a^2; x+2=b^2$ với $a,b\in\mathbb{Z}$
$\Rightarrow 1=b^2-a^2=(b-a)(b+a)$

$\Rightarrow b-a=b+a=1$ hoặc $b-a=b+a=-1$

$\Rightarrow a=0\Rightarrow x=-1$

Khi đó:

$(x+y)^2=(x+1)(x+2)=0$

$\Rightarrow y=-x=1$

Vậy $(x,y)=(-1,1)$

x^3-3x^2+5x+2007=0

nên \(x\simeq-11,57\)

y^3-3y^2+5y-2013=0

nên \(y\simeq13,57\)

=>x+y=2

NV
5 tháng 1

\(2x^2+2y^2\ge4xy\)

\(4x^2+z^2\ge4xz\)

\(4y^2+z^2\ge4yz\)

Cộng vế:

\(2\left(3x^2+3y^2+z^2\right)\ge4\left(xy+yz+zx\right)\ge20\)

\(\Rightarrow3x^2+3y^2+z^2\ge10\)

Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(1;1;2\right);\left(-1;-1;-2\right)\)

22 tháng 11 2019

\(x^2+2y^2-3xy+2x-4y+3=0\)

\(\Leftrightarrow4x^2+8y^2-12xy+8x-16y+12=0\)

\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)-y^2+8x-16y+12=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+4\left(2x-3y\right)+4-\left(y^2-4y+4\right)+6=0\)

\(\Leftrightarrow\left(2x-3y+2\right)^2-\left(y-2\right)^2+6=0\)

\(\Leftrightarrow\left(2x-3y+2-y+2\right)\left(2x-3y+2+y-2\right)=-6\)

\(\Leftrightarrow\left(2x-4y+4\right)\left(2x-2y\right)=-6\)

\(\Leftrightarrow\left(x-2y+2\right)\left(x-y\right)=-\frac{3}{2}\)

Đến đây ta thấy vô lý

P/S:is that true ?

13 tháng 2 2022

=-12 mà CTV