Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(2\left|x\right|+3\left|y\right|=13\Rightarrow\left|x\right|=\dfrac{13-3\left|y\right|}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\left|y\right|\le\dfrac{13}{3}\\\left|y\right|\text{ là số lẻ}\end{matrix}\right.\) \(\Rightarrow\left|y\right|=\left\{1;3\right\}\)
- Với \(\left|y\right|=1\Rightarrow\left|x\right|=5\Rightarrow\) có 4 cặp
- Với \(\left|y\right|=3\Rightarrow\left|x\right|=2\) có 4 cặp
Tổng cộng có 8 cặp số nguyên thỏa mãn
2.
\(x\left(y+3\right)=7y+21+1\)
\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=1\)
\(\Leftrightarrow\left(x-7\right)\left(y+3\right)=1\)
\(\Rightarrow\left(x;y\right)=\left(6;-4\right);\left(8;-2\right)\) có 2 cặp
Ta có: \(xy+3x-y-3=0\)
\(\Rightarrow\)xy + 3x - y = 6
=>x(y+3) - y = 6
=>x(y+3) - y - 3 = 3
=>x(y+3) - (y+3) = 3
=> (y+3)(x-1) =3
Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên
Ta có bảng sau:
y+3 | -3 | -1 | 1 | 3 |
y | -6 | -4 | -2 | 0 |
x-1 | -1 | -3 | 3 | 1 |
x | 0 | -2 | 4 | 2 |
\(a,x+y=xy\)
\(\Rightarrow x-xy+y-1=-1\)
\(\Rightarrow x\left(1-y\right)-\left(1-y\right)=-1\)
\(\Rightarrow\left(x-1\right)\left(1-y\right)=-1\)
TH1 : \(\hept{\begin{cases}x-1=1\\1-y=-1\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\)
TH2 : \(\hept{\begin{cases}x-1=-1\\1-y=1\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
\(b,xy-x+2\left(y-1\right)=13\)
\(\Rightarrow x\left(y-1\right)+2\left(y-1\right)=13\)
\(\Rightarrow\left(x+2\right)\left(y-1\right)=13\)
TH1 : \(\hept{\begin{cases}x+2=1\\y-1=13\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=14\end{cases}}}\)
TH2 : \(\hept{\begin{cases}x+2=13\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=11\\y=2\end{cases}}}\)
TH3 : \(\hept{\begin{cases}x+2=-1\\y-1=-13\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=-12\end{cases}}}\)
TH4 : \(\hept{\begin{cases}x+2=-13\\y-1=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-15\\y=0\end{cases}}}\)
x và y là số nguyên tố\(\Rightarrow\)x;y\(\in N\)
Để x;y\(\in N\) thì \(3x\le1039;4^y\le1039\Leftrightarrow x\le346;4^y\le5\)
\(\Rightarrow y\in\left\{2;3;5\right\}\)
Ta có:
TH1:y=2
3x+42=1039
3x+16=1039
3x=1039-16
3x=1023
x=1023:3
x=341
Mà 341 không là số nguyên tố\(\Rightarrow\)Không có trường hợp x;y thỏa mãn
TH2:y=3
3x+43=1039
3x+64=1039
3x=1039-64
3x=975
x=975:3
x=325
Vì 325 không phải là số nguyên tố\(\Rightarrow\)Không có trường hợp x;y thỏa mãn
TH3:y=5
3x+45=1039
3x+1024=1039
3x=1039-1024
3x=15
x=15:3
x=5
Vậy \(\hept{\begin{cases}x=5\\y=5\end{cases}}\)