Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì |2x+8| và |3y-9x| đều >= 0
=> |2x+8| + |3y-9x| >= 0
Dấu "=" xảy ra <=> 2x+8=0 và 3y-9x=0 <=> x=-4 và y=-12
Vậy x=-4 và y=-12
Tk mk nha
\(a,x\left(4-y\right)=3\)
\(\Rightarrow x;4-y\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Tự lập bảng ...
\(b,\left(x-1\right)\left(5-y\right)=7\)
\(Th1:x-1=7\Leftrightarrow x=8\)
\(5-y=1\Leftrightarrow y=4\)
\(Th2:x-1=1\Leftrightarrow x=2\)
\(5-y=7\Leftrightarrow x=-2\)
\(Th3:x-1=-7\Leftrightarrow x=-6\)
\(5-y=-1\Leftrightarrow y=6\)
\(Th4:x-1=-1\Leftrightarrow x=0\)
\(5-y=-7\Leftrightarrow x=12\)
\(c,\left(xy-3\right)\left(x+2\right)=-5\)
\(\Rightarrow xy-3;x+2\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
Tự lập bảng ...
a) Xét \(Ư\left(3\right)=1;3;-1;-3\Leftrightarrow x\left(4-y\right)=3\) có bốn trường hợp
\(TH1:x=1\Leftrightarrow\left(4-y\right)=3\Rightarrow y=4-3=1\)
\(TH2:x=3\Rightarrow\left(4-y\right)=1\Leftrightarrow y=4-1=3\)
\(TH3:x=-1\Rightarrow\left(4-y\right)=-3\Leftrightarrow y=4-\left(-3\right)=7\)
\(TH4:x=-3\Rightarrow\left(4-y\right)=-1\Leftrightarrow y=4-\left(-1\right)=5\)
b) Xét \(Ư\left(7\right)=1;7;-1;-7\Rightarrow\left(x-1\right)\left(5-7\right)\) có bốn trường hợp
\(TH1:x-1=1\Leftrightarrow x=1+1=2\Rightarrow\left(5-y\right)=7\Leftrightarrow v=5-7=-2\)
\(TH2:x-1=7\Leftrightarrow x=7+1=8\Rightarrow\left(5-y\right)=1\Leftrightarrow y=5-1=4\)
\(TH3:x-1=-1\Leftrightarrow x=0\Rightarrow\left(5-y\right)=-7\Leftrightarrow v=12\)
\(TH4:x-1=-7\Leftrightarrow x=-6\Rightarrow\left(5-y\right)=-1\Leftrightarrow y=6\)
Chứng minh tương tự với trường hợp c
\(\Leftrightarrow2xy+2x-y-1=6\)
\(\Leftrightarrow y\left(2x-1\right)=-2x+7=-\left(2x-7\right)\)
\(\Leftrightarrow y=\dfrac{-\left(2x-7\right)}{2x-1}=\dfrac{-\left(2x-1\right)+6}{2x-1}=-1+\dfrac{6}{2x-1}\) (1)
Để y nguyên \(\Rightarrow6⋮\left(2x-1\right)\Rightarrow\left(2x-1\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow x=\left\{-\dfrac{5}{2};-1;-\dfrac{1}{2};0;1;\dfrac{3}{2};2;\dfrac{5}{2}\right\}\) Do x nguyên
\(\Rightarrow x=\left\{-1;0;1;2\right\}\) Thay lần lượt các giá trị của x vào (1) để tìm các giá trị tương ứng của y
ta có (2x+1).(2-y)=6
=> (2x+1).(2-y)=1.6=6.1=(-1)(-6)=(-6)(-1)
trường hợp 1: 2x+1=1;2-y=6
=>x=0;y=-4
th2: 2x+1=6;2-y=1
=> x=5/2;y=1 (loại)
th3:2x+1=-1;2-y=-6
=> x=-1;y=8
th4: 2x+1=-6;2-y=-1
=> x=-7/2:y=3 (loại)
vậy...
Vì x,y là số nguyên nên 2x+1 và 2-y thuộc Ư 6={-6;-3;-2;-1;1;2;3;6}
Ta có bảng sau
2x+1 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
2x | -7 | -4 | -3 | -2 | 0 | 1 | 2 | 5 |
x | loại | -2 | loại | -1 | 0 | loại | 1 | loại |
2-y | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
y | 3 | 4 | 5 | 8 | -4 | -1 | 0 | 1 |
Vậy cặp số (x,y) là (-2;4);(-1;8);(0;-4);(1;0)
a: (x-2)(y-3)=5
=>\(\left(x-2\right)\cdot\left(y-3\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x-2;y-3\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;8\right);\left(7;4\right);\left(1;-2\right);\left(-3;2\right)\right\}\)
b: (2x-1)*(y-4)=-11
=>\(\left(2x-1\right)\cdot\left(y-4\right)=1\cdot\left(-11\right)=\left(-11\right)\cdot1=\left(-1\right)\cdot11=11\cdot\left(-1\right)\)
=>\(\left(2x-1;y-4\right)\in\left\{\left(1;-11\right);\left(-11;1\right);\left(-1;11\right);\left(11;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(-5;5\right);\left(0;15\right);\left(6;3\right)\right\}\)
c: xy-2x+y=3
=>\(x\left(y-2\right)+y-2=1\)
=>\(\left(x+1\right)\left(y-2\right)=1\)
=>\(\left(x+1\right)\cdot\left(y-2\right)=1\cdot1=\left(-1\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y-2\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;3\right);\left(-2;1\right)\right\}\)
( y-4) ( 1+ 2x) =6
=> 1+2x \(\in\)Ư(6)={ 1;2;3; 6; -1; -2; -3; -6}
Vì 1+2x là số lẻ nên 1+2x\(\in\){ 1; 3; -1;-3}
=> 2x\(\in\){ 0; 2; -2; -4}
=> x \(\in\){ 0; 1; -1; -2}
Sau bn tự thay nha