Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tìm x , biết
.2x -1/2-1/6-1/12-...- 1/49*50=7-1/50+x
=> 2x- ( 1/2+1/6+1/12+...1/ 49.50 )= 7-1/50+x
=> 2x -( 1/1.2 + 1/2.3+1/3.4+...+1/49.50)= 7-1/50+x
=> 2x - ( 1- 1/2+ 1/2-1/3+1/3-1/4+...+1/49-1/50) = 7-1/50 + x
=> 2x - ( 1-1/50) =7-1/50 + x
=> 2x- 1+ 1/50=7-1/50+ x
=> 1+1/50= 2x- (7 - 1/50+ x)
=> 1+1/50 = 2x- 7 + 1/50- x
=> 1+1/50 = x + 1/50 - 7
=> 1 = x + 1/50 - 7 - 1/50
=> 1 = x - 7
=> x = 8
Vậy...
Tham khảo thêm:Câu hỏi của Cừu beta - Toán lớp 7 - Học toán với OnlineMath
LinkCâu hỏi của Cừu beta - Toán lớp 7 - Học toán với OnlineMath
Giup mình với ah.
1- Tính :
A= 5. | x- 5 | - 3x + 1
2 - Tìm các số nguyên x,y ; sao cho :
a) 5/x - y/3 = 1/6 b) 5/x + y/4 = 1/8
3- Tìm giá trị lớn nhất của Q = 27-2x/12-x ( x là số nguyên)
---------------------------------------------------------------------------------------------
1) \(A=5.\left|x-5\right|-3x+1\)
\(A=\left[{}\begin{matrix}5.\left(x-5\right)-3x+1\left(x-5\ge0\right)\\5.\left(5-x\right)-3x+1\left(x-5< 0\right)\end{matrix}\right.\)
\(A=\left[{}\begin{matrix}5x-25-3x+1\left(x\ge5\right)\\25-5x-3x+1\left(x< 5\right)\end{matrix}\right.\)
\(A=\left[{}\begin{matrix}2x-24\left(x\ge5\right)\\26-8x\left(x< 5\right)\end{matrix}\right.\)
3:
\(Q=\dfrac{27-2x}{12-x}=\dfrac{2x-27}{x-12}\)
\(\Leftrightarrow Q=\dfrac{2x-24-3}{x-12}=2-\dfrac{3}{x-12}\)
Để Q lớn nhất thì \(2-\dfrac{3}{x-12}\) lớn nhất
=>\(\dfrac{3}{x-12}\) nhỏ nhất
=>x-12 là số nguyên âm lớn nhất
=>x-12=-1
=>x=11
Vậy: \(Q_{min}=2-\dfrac{3}{11-12}=2+3=5\) khi x=11
Bài 2:
a: \(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(15-xy=\dfrac{x}{2}\)
=>\(30-2xy=x\)
=>x+2xy=30
=>x(2y+1)=30
mà x,y nguyên
nên \(\left(x;2y+1\right)\in\left\{\left(30;1\right);\left(-30;-1\right);\left(2;15\right);\left(-2;-15\right);\left(10;3\right);\left(-10;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(30;0\right);\left(-30;-1\right);\left(2;7\right);\left(-2;-8\right);\left(10;1\right);\left(-10;-2\right)\right\}\)
b: \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
=>\(\dfrac{20+xy}{4x}=\dfrac{1}{8}\)
=>\(\dfrac{40+2xy}{8x}=\dfrac{x}{8x}\)
=>40+2xy=x
=>x-2xy=40
=>x(1-2y)=40
mà x,y nguyên
nên \(\left(x;1-2y\right)\in\left\{\left(40;1\right);\left(-40;-1\right);\left(8;5\right);\left(-8;-5\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(40;0\right);\left(-40;1\right);\left(8;-2\right);\left(-8;3\right)\right\}\)
\(1)\)
\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận )
TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại )
Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)
\(2)\)
\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)
\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)
\(\Rightarrow\)\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận )
\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)
Vậy \(1\le x\le5\) và \(y=-1\)
Ta có : \(\frac{1}{x}-\frac{y}{6}=\frac{1}{3}\Leftrightarrow\frac{1}{x}=\frac{1}{3}+\frac{y}{6}\Leftrightarrow\frac{1}{x}=\frac{2+y}{6}\)
\(\Leftrightarrow\left(2+y\right)x=6\Leftrightarrow2+y;x\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2 + y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
y | 4 | -8 | 1 | -5 | 0 | -4 | -1 | -3 |
\(\frac{1}{x}-\frac{y}{6}=\frac{1}{3}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{3}+\frac{y}{6}\)
\(\Rightarrow\frac{1}{x}=\frac{2}{6}+\frac{y}{6}\)
\(\Rightarrow\frac{1}{x}=\frac{2+y}{6}\)
\(\Rightarrow x\left(2+y\right)=6\)
Ta có bảng sau :
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2+y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
y | 4 | -8 | 1 | -5 | 0 | -4 | -1 | -3 |
Vậy ( x ; y ) = { ( 1 ; 4 ) , ( -1 ; -8 ) , ( 2 ; 1 ) , ( -2 ; -5 ) , ( 3 ; 0 ) , ( -3 ; -4 ) , ( 6 ; -1 ) , ( -6 ; -3 ) }