Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
a) Đánh giá: \(\left|x-y-2\right|\ge0;\) \(\left|y+2\right|\ge0\)
\(\Rightarrow\)\(\left|x-y-2\right|+\left|y+2\right|\ge0\)
Vậy \(\left|x-y-2\right|+\left|y+2\right|=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-y-2=0\\y+2=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=0\\y=-2\end{cases}}\)
Vậy....
những câu sau cũng đánh giá tương tự nhé
b) \(\left|x-3y\right|^{2007}+\left|y+4\right|^{2008}=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-3y=0\\y+4=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)
Vậy....
a) \(-2011-\left(200-2011\right)\)
\(=-2011-200+2011\)
\(=\left(-2011+2011\right)-200\)
\(=0-200\)
\(=-200\)
b) \(\left(-2\right)^2-\left(-2000\right)^0+\left(-1\right)^{2018}-\left|-20\right|\)
\(=4-1+1-20\)
\(=4-20\)
\(=-16\)
Bài 1 :
\(a)-2011-(200-2011)\)
\(=-2011-(200+2011)\)
\(=(-2011+2011)-200\)
\(=0-200=-200\)
\(b)(-2)^2-(-2000)^0+(-1)^{2018}-\left|-20\right|\)
\(=4-1+1-20\)
\(=4-20=-16\)
\(c)23\cdot18-23\cdot26+(-23)\cdot2\)
\(=23\cdot(18-26)+-(23\cdot2)\)
\(=23\cdot(-8)+(-46)\)
\(=-230\)
Bài 2 : Tìm số nguyên x biết :
\(a)3x-(-5)=20\)
\(\Rightarrow3x+5=20\)
\(\Rightarrow3x=20-5\)
\(\Rightarrow3x=15\Rightarrow x=5\)
\(b)3(x+2)=-4+(-2)^3\)
\(\Rightarrow3(x+2)=-4+(-8)\)
\(\Rightarrow3(x+2)=-12\)
\(\Rightarrow x+2=-12\div3\)
\(\Rightarrow x+2=-4\)
Tự tìm x câu b, và câu c,
Bài 3 tự làm
Giải
Ta có : \(\hept{\begin{cases}\left(x-y+z\right)^2\ge0\\\left(x+y-3\right)^2\ge0\\\left(z+5\right)^2\ge0\end{cases}}\)
Mà \(\left(x-y+z\right)^2+\left(x+y-3\right)^2+ \left(z+5\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y+z\right)^2=0\\\left(x+y-3\right)^2=0\\\left(z+5\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-y+z=0\\x+y-3=0\\z+5=0\end{cases}}\)
\(\Rightarrow z=0-5\Leftrightarrow z=-5\)
\(\Rightarrow\hept{\begin{cases}x+y=0+3=3\\x-y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=3\\x-y=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\left(3+5\right)\div2=4\\y=3-4=-1\end{cases}}\)
Vậy \(\hept{\begin{cases}z=-5\\x=4\\y=-1\end{cases}}\)
( x - y + z )2 + ( x + y - 3 )2 + ( z + 5 )2 = 0
<=> \(\hept{\begin{cases}\left(x-y+z\right)^2=0\\\left(x+y-3\right)^2=0\\\left(z+5\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-y-5=0\\x+y-3=0\\z=-5\end{cases}}\)
<=> \(\hept{\begin{cases}2x-8=0\\x+y-3=0\\z=-5\end{cases}}\)
<=> \(\hept{\begin{cases}x=4\\y=-1\\z=-5\end{cases}}\)
Hk tốt
vì (2.x+4)^2 lớn hơn hoặc bằng 0
(y-5)^2 lớn hơn hoặc bằng 0
mà tổng của chúng =0 suy ra (2x+4)^2=0 và (y-5)^2 =0
2x+4=0 suy ra 2x= - 4 và y-5=0
vậy x=-2 và y=5