Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^x=8\)
⇔ \(2^x=2^3\)
⇒ \(x=3\)
b) \(3^x=27\)
⇔ \(3^x=3^3\)
⇒ \(x=3\)
c) \(\left(-\dfrac{1}{2}\right)x=\left(-\dfrac{1}{2}\right)^4\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^4\div\left(-\dfrac{1}{2}\right)\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^3\)
d) \(x\div\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}\right)^2\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^2\cdot\left(-\dfrac{3}{4}\right)\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^3=-\dfrac{27}{64}\)
d) \(\left(x+1\right)^3=-125\)
⇔ \(\left(x+1\right)^3=\left(-5\right)^3\)
⇔ \(x+1=-5\)
⇔ \(x=-5-1=-6\)
2:
a: (x-1,2)^2=4
=>x-1,2=2 hoặc x-1,2=-2
=>x=3,2(loại) hoặc x=-0,8(loại)
b: (x-1,5)^2=9
=>x-1,5=3 hoặc x-1,5=-3
=>x=-1,5(loại) hoặc x=4,5(loại)
c: (x-2)^3=64
=>(x-2)^3=4^3
=>x-2=4
=>x=6(nhận)
\(\left|x\left(x^2-\frac{5}{4}\right)\right|=x\)
\(\Leftrightarrow\hept{\begin{cases}x\left(x^2-\frac{5}{4}\right)=x\\x\left(x^2-\frac{5}{4}\right)=-x\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-\frac{5}{4}=\frac{x}{x}\\x^2-\frac{5}{4}=-\frac{x}{x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-\frac{5}{4}=1\\x^2-\frac{5}{4}=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=\frac{9}{4}\\x^2=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{3}{2}\\x=\pm\frac{1}{2}\end{cases}}\)
vậy ....
\(\left|x\left(x^2-\frac{5}{4}\right)\right|=x\Leftrightarrow\left|x^3-\frac{5}{4}x\right|=x\)
\(\Leftrightarrow\hept{\begin{cases}x^3-\frac{5}{4}x=x\\x^3-\frac{5}{4}x=-x\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x^2-\frac{5}{4}\right)=x\\x\left(x^2-\frac{5}{4}\right)=-x\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-\frac{5}{4}=\frac{x}{x}\\x^2-\frac{5}{4}=-\frac{x}{x}\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-\frac{5}{4}=1\\x^2-\frac{5}{4}=-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=\frac{9}{4}\\x^2=\frac{1}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{3}{2}\\x=\pm\frac{1}{2}\end{cases}}}\)
a. Tìm số nguyên x biết (/x/-3)(x^2+4) nhỏ hơn hoặc bằng 4
b. Tìm x,y,z biết /x-1:2/+/y+2:3/+/x^2+xz/
\(4^{x+2}-4^{x-1}=252\)
\(4^x\left(4^2-4^{-1}\right)=252\)
\(4^x\left(16-\frac{1}{4}\right)=252\)
\(4^x\left(\frac{64}{4}-\frac{1}{4}\right)=252\)
\(4^x.\frac{63}{4}=252\)
\(4^x=252:\frac{63}{4}\)
\(4^x=252.\frac{4}{63}\)
\(4^x=16\)
\(4^x=4^2\)
=>x=2
đề ko rõ rằng. Số 2, số trên mũ hay là số hạng