Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(\frac{-3}{x-1}\in Z\) \(\Leftrightarrow-3⋮\left(x-1\right)\)
\(\Rightarrow x-1\inƯ\left(-3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow x=\left\{2;0;4;-2\right\}\)
b) Để \(\frac{-4}{2x-1}\in Z\Leftrightarrow-4⋮\left(2x-1\right)\)
\(\Rightarrow2x-1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow2x=\left\{0;2;-1;3;-3;5\right\}\)
\(\Rightarrow x=\left\{0;1;\frac{-1}{2};\frac{3}{2};\frac{-3}{2};\frac{5}{2}\right\}\)
Mà \(x\in Z\) \(\Rightarrow x=\left\{0;2\right\}\)
c) \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+10}{x-1}\)
Vì \(3\left(x-1\right)⋮\left(x-1\right)\Rightarrow10⋮\left(x-1\right)\)
\(\Rightarrow x-1\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
\(\Rightarrow x=\left\{2;0;3;-1;6;-4;11;-9\right\}\)
d) Tương tự
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
Để \(A\inℤ\) thì \(\left(4x-6\right)⋮\left(2x+1\right)\)
\(\Leftrightarrow\left(4x+2-8\right)⋮\left(2x+1\right)\)
\(\Leftrightarrow\left[2\left(2x+1\right)+8\right]⋮\left(2x+1\right)\)
Vì \(\left[2\left(2x+1\right)\right]⋮\left(2x+1\right)\) nên \(8⋮\left(2x+1\right)\)
\(\Rightarrow2x+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Mà 2x + 1 lẻ nên \(\Rightarrow2x+1\in\left\{\pm1\right\}\)
Lập bảng:
\(2x+1\) | \(-1\) | 1\(\) |
\(x\) | \(-1\) | \(0\) |
Vậy \(x\in\left\{-1;0\right\}\)
B,C,E tương tự
a) \(\frac{-3}{x-1}\Rightarrow\frac{-3}{x-1}=-3\)để x nguyên
\(\frac{-3}{1}=3\Rightarrow\frac{-3}{1+1}=x=2\)
\(\Rightarrow x=2\)
b)\(\frac{-4}{2x-1}=-4\)để x nguyên
\(\frac{-4}{1}=-4\Rightarrow\frac{-4}{\left(1+1\right)\div2}=x=1\)
\(\Rightarrow x=1\)
c) \(\frac{3x+7}{x-1}=5\)để x nguyên
\(\frac{25}{5}=5\Rightarrow\frac{\left(25-7\right)\div3}{5+1}=x=6\)
\(\Rightarrow x=6\)
d) \(\frac{4x-1}{3-x}=7\)để x nguyên
\(\frac{7}{1}=7\Rightarrow\frac{\left(7+1\right)\div4}{3-1}=x=2\)
\(\Rightarrow x=2\)
a) Để \(\frac{3}{x-1}\inℤ\Rightarrow\left(x-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)
b) Để \(\frac{4}{2x-1}\inℤ\Rightarrow\left(2x-1\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
=> \(2x\in\left\{-3;-1;0;2;3;5\right\}\)
=> \(x\in\left\{-\frac{3}{2};-\frac{1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
c) Ta có: \(\frac{3x+7}{x-7}=\frac{\left(3x-21\right)+28}{x-7}=2+\frac{28}{x-7}\)
Xong xét các TH như a,b nhé
thanks nhưng mai mik mới t.i.k đc bạn
làm bài & thôi :
(x2 - 2x + 3) \(⋮\)(x - 1)
= x2 - 2x + 3
=) x2 - 2x + 3 - ( x - 1 )
=) x2 - 1
=) x2 - 1 - x( x - 1 )
=) 2 \(⋮\)x - 1
tự làm
a) Ta có: (x2 - 2x + 3) \(⋮\)(x - 1)
<=> [x(x - 1) - (x - 1) + 2] \(⋮\)(x - 1)
<=> [(x - 1)2 + 2] \(⋮\)(x - 1)
Do (x - 1)2 \(⋮\)(x - 1) => 2 \(⋮\)(x - 1)
=> (x - 1) \(\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng :
x - 1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
Vậy ...
b) (3x - 1) \(⋮\)(x - 4)
<=> [3(x - 4) + 11] \(⋮\)(x - 4)
Do 3(x - 4) \(⋮\)(x - 4) => 11 \(⋮\)(x - 4)
=> (x - 4) \(\in\)Ư(11) = {1; -1; 11; -11}
Lập bảng:
x - 4 | 1 | -1 | 11 | -11 |
x | 5 | 3 | 15 | -7 |
vậy ...
c;d tương tự trên
2x+/x/=3x ( / / là giá trị tuyệt đối nha bạn )
/x/=3x-2x
/x/=x
Do giá trị tuyệt đối của bất kì số nguyên nào đều không bao giờ là số nguyên âm nên x phải lớn hơn -1
\(\Rightarrow x\in N\)
`2x+|x|=3x`
`=>|x|=3x-2x`
`=>|x|=x`
Sử dụng tính chất `|A|=|A|<=>A>=0`
`=>x>=0`
Vậy với `x>=0` thì `2x+|x|=3x`