Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(x^2+y^2-2x-4y+5=0\)
\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)
\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)
Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$
$\Rightarrow x=1; y=2$
Vậy...........
Bài 2:
Ta có:
\(a(a-b)+b(b-c)+c(c-a)=0\)
\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)
\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)
Lập luận tương tự bài 1, ta suy ra :
\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)
Khi đó, thay $b=c=a$ ta có:
\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)
\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)
\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)
Vậy $P_{\min}=\frac{17}{4}$
Giá trị này đạt được tại $b=c=a=\frac{1}{2}$
![](https://rs.olm.vn/images/avt/0.png?1311)
1a/ x3+x2+x+1=0
x2(x+1).(x+1)=0
=> x2(x+1)=0 x =1
hoặc =>[
x+1=0 x=-1
b/(x+2)2=x+2
x2+2.x.2+22 =x+2
x+x+4x+4=x+2
6x+4=x+2
....
c/(x+1)(6x2+2x)+(x-1)(6x2+2x)=0
x2-12 + (6x2+2x)2=0
=> x2-1 = 0 x=1
hoặc => [
(6x2+2x)2=0 x= 0
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
13.
M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)
\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)
\(=\left(x^2+10x+20\right)^2-16+16\)
\(=\left(x^2+10x+20\right)^2\) là một số chính phương
Nhiều quá, nhìn đã thấy ớn lạnh :(
Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
pt <=> \(x^2+4x+4+x^2-6x+9=2x^2+14x\)
<=> \(2x^2-2x+13=2x^2+14x\)
<=> \(16x=13\)
<=> \(x=\frac{13}{16}\)
b)
pt <=> \(x^3+3x^2+3x+1+x^3-3x^2+3x-1=2x^3\)
<=> \(2x^3+6x=2x^3\)
<=> \(6x=0\)
<=> \(x=0\)
c)
pt <=> \(\left(x^3-3x^2+3x-1\right)-125=0\)
<=> \(\left(x-1\right)^3=125\)
<=> \(x-1=5\)
<=> \(x=6\)
d)
pt <=> \(\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
<=> \(\left(x-1\right)^2+\left(y+2\right)^2=0\) (1)
CÓ: \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)
=> \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DÁU "=" XẢY RA <=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
e)
pt <=> \(2x^2+8x+8+y^2-2y+1=0\)
<=> \(2\left(x+2\right)^2+\left(y-1\right)^2=0\)
TA LUÔN CÓ: \(2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
=> DẤU "=" XẢY RA <=> \(\hept{\begin{cases}2\left(x+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a) ( x + 2 )2 + ( x - 3 )2 = 2x( x + 7 )
<=> x2 + 4x + 4 + x2 - 6x + 9 = 2x2 + 14x
<=> x2 + 4x + x2 - 6x - 2x2 - 14x = -4 - 9
<=> -16x = -13
<=> x = 13/16
b) ( x + 1 )3 + ( x - 1 )3 = 2x3
<=> x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 = 2x3
<=> x3 + 3x2 + 3x + x3 - 3x2 + 3x - 2x3 = -1 + 1
<=> 6x = 0
<=> x = 0
c) x3 - 3x2 + 3x - 126 = 0
<=> ( x3 - 3x2 + 3x - 1 ) - 125 = 0
<=> ( x - 1 )3 = 125
<=> ( x - 1 )3 = 53
<=> x - 1 = 5
<=> x = 6
d) x2 + y2 - 2x + 4y + 5 = 0
<=> ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0
<=> ( x - 1 )2 + ( y + 2 )2 = 0 (*)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
e) 2x2 + 8x + y2 - 2y + 9 = 0
<=> 2( x2 + 4x + 4 ) + ( y2 - 2y + 1 ) = 0
<=> 2( x + 2 )2 + ( y - 1 )2 = 0 (*)
\(\hept{\begin{cases}2\left(x+2\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức xảy ra (*) ) <=> \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(x^2-2x+5+y^2-4y=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)
Để PT bằng 0 thì:
\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)
\(\Rightarrow x=1\)và \(y=2\)
2) \(y^2+2y+5-12x+9x^2=0\)
\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)
..............................................................................
..............<Giải thích như câu đầu>......................
.............................................................................
\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)
\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)
3) \(x^2+20+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)
......................................................................
...............<Giải thích như câu đầu>..............
.......................................................................
\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)
\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)
1) \(x^2-2x+5+y^2-4y=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)
Để PT bằng 0 thì:
\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)
\(\Rightarrow x=1\)và \(y=2\)
2) \(y^2+2y+5-12x+9x^2=0\)
\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)
..............................................................................
..............<Giải thích như câu đầu>......................
.............................................................................
\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)
\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)
3) \(x^2+20+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)
......................................................................
...............<Giải thích như câu đầu>..............
.......................................................................
\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)
\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1a,8x^2y^2-12x^3+6x^2\)
\(=2\left(4x^2y^2-13x^3+3x^2\right)\)
\(b,5x\left(x-y\right)-\left(x-y\right)\)( sai đề hả )
\(=\left(x-y\right)\left(5x-1\right)\)
\(c,4x\left(x-2\right)-\left(2-x\right)^2\)
\(=4x\left(x-2\right)-\left(x-2\right)^2\)
\(=\left(x-2\right)\left(4x-x+2\right)=\left(x-2\right)\left(3x+2\right)\)
\(2,\)\(x\left(x-3\right)-\left(3-x\right)=0\)
\(\Rightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)
phần b làm theo đề thôi nhé ko biết đầu bài đúng ko
\(5x\left(x-y\right)-\left(y-y\right)\)
\(=5x\left(x-y\right)\)
HA ha ngắn gọn vãi
![](https://rs.olm.vn/images/avt/0.png?1311)
Lấy pt (2) - pt (1) ta có:
8y + 8 = 0
=> y = -1
Thay y = -1 vào pt (1) ta có:
x2 - 10x + 26 = 0
( Giải phương trình bậc 2 bằng máy tính casio )
Ta được: x là số phức => phương trình vô nghiệm
=> Không tìm được cặp x,y thảo mãn hệ phương trình trên.
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
(2x - 3)2 - 4 (x - 3) (x + 3) = (-11)
<=> (4x2 - 12x +9) - 4 . (X2 - 9) + 11 =0
<=> 4x2 - 12x + 9 - 4x2 + 36 + 11 = 0
<=> -12x + 46 = 0
<=> X = 23/6
a) \(x^2+y^2-4y+3=0\)
\(\Leftrightarrow x^2+\left(y-2\right)^2=1\)
Xét 2TH:
TH1: \(\left\{{}\begin{matrix}x=1\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x=0\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)
Vậy có các cặp số nguyên \(\left(1;2\right),\left(3;0\right)\) thỏa mãn đề bài.
b) \(x^2+4y^2-2x+12y+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y+3\right)^2=9\)
Ta thấy \(2x+3\) là số lẻ nên ta chỉ có 1 TH duy nhất là
\(\left\{{}\begin{matrix}2y+3=9\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=1\end{matrix}\right.\)
Vậy cặp số nguyên \(\left(1;3\right)\) thỏa mãn ycbt.
a: \(x^2+y^2-4y+3=0\)
=>\(x^2-1+\left(y^2-4y+4\right)=0\)
=>\(\left(x-1\right)\left(x+1\right)+\left(y-2\right)^2=0\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)\left(x+1\right)=0\\\left(y-2\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\in\left\{1;-1\right\}\\y=2\end{matrix}\right.\)
b: \(x^2+4y^2-2x+12y+1=0\)
=>\(x^2-2x+1+4y^2+12y=0\)
=>\(\left(x-1\right)^2+4y\left(y+3\right)=0\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\4y\left(y+3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y\in\left\{0;-3\right\}\end{matrix}\right.\)