Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(xy-2x+3y=11\)
\(x\left(y-2\right)+3y-6=5\)
\(x\left(y-2\right)+3\left(y-2\right)=5\)
\(\left(x+3\right)\left(y-2\right)=5\)
\(\Rightarrow x+3;y-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\)Ta có bảng giá trị:
\(x+3\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(y-2\) | \(5\) | \(-5\) | \(1\) | \(-1\) |
\(x\) | \(-2\) | \(-4\) | \(2\) | \(-8\) |
\(y\) | \(7\) | \(-3\) | \(3\) | \(1\) |
Vậy \(\left(x;y\right)\in\left\{\left(-2;7\right);\left(-4;-3\right);\left(2;3\right);\left(-8;1\right)\right\}\)
TH1: y=-3 (sai)
TH2: y khác -3 vậy x= (11+2y) / (y+3)=2+5/(y+3)
Vì x thuộc Z nên 5/(y+3) phải là số nguyên
==> y+3 phải là ước của 5 ==> y+3 có thể bằng 1, -1, 5, -5. từ đó bạn tìm được x rồi.
k mk nha chúc bn hok tốt
Dạng này bản chất cũng chỉ là phân tích đa thức thành nhân tử mà thôi
một vế sẽ là đa thức có chứa biến vế còn lại là một số nguyên.
sau đó ta tìm ước của số nguyên đó rồi cho các ước đó lần lượt bằng các nhân tử vế kia, bài toán trở thành giải phương trình bậc nhất .
xy + 2x - 2y = 3
( xy + 2x) - 2y - 4 = -1
x( y + 2) - 2 ( y + 2) = -1
(y+2)(x-2) = -1
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y+2=-1\\x-2=1\end{matrix}\right.\\\left\{{}\begin{matrix}y+2=1\\x-2=-1\end{matrix}\right.\end{matrix}\right.\)
\(\left[{}\begin{matrix}y=-3;x=3\\y=-1;x=1\end{matrix}\right.\)
a.
$xy=-21=7.(-3)=(-7).3=3.(-7)=(-3).7=21.(-1)=(-21).1=(-1).21=1(-21)$
Do đó $(x,y)=(7,-3); (-7,3); (3,-7); (-3,7); (21,-1); (-21,1); (-1,21); (1,-21)$
b.
$(x+5)(y-3)=14=1.14=14.1=(-14)(-1)=(-1)(-14)=2.7=7.2=(-2)(-7)=(-7)(-2)$
Do đó:
$(x+5,y-3)=(1,14); (14,1); (-14,-1); (-1,-14); (2,7); (7,2); (-2,-7); (-7,-2)$
Đến đây thì đơn giản rồi.
c.
$x(y-2)=-19$, bạn làm tương tự
d. Tương tự
xy + 2x = y = 3 , thay y = 3
=> 3x+2x = 3
=> 5x = 3
=> x = \(\dfrac{3}{5}\) ( vô lý )