Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Đề bị thiếu
b) Ta có: \(\frac{x}{2}=\frac{y}{5}\) và x+y=35
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{35}{7}=5\)
Do đó:
\(\left\{{}\begin{matrix}\frac{x}{2}=5\\\frac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)
Vậy: x=10 và y=25
Bài 2:
Ta có: \(\frac{1}{2}=\frac{x}{8}-\frac{1}{14}\)
\(\Leftrightarrow\frac{x}{8}=\frac{1}{2}+\frac{1}{14}=\frac{7}{14}+\frac{1}{14}=\frac{8}{14}=\frac{4}{7}\)
\(\Leftrightarrow x=\frac{4\cdot8}{7}=\frac{32}{7}\)
Vậy: \(x=\frac{32}{7}\)
Bài 1:
b/ \(\frac{x}{2}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{35}{7}=5\)
\(\frac{x}{2}=5\Rightarrow x=2.5=10\)
\(\frac{y}{5}=5\Rightarrow y=5.5=25\)
Vậy:.................
Bài 2:
\(\frac{1}{2}=x:8-\frac{1}{14}\)
Hay: \(x:8-\frac{1}{14}=\frac{1}{2}\)
=> \(x:8=\frac{1}{2}+\frac{1}{14}=\frac{4}{7}\)
=> \(x=\frac{4}{7}.8=\frac{32}{7}\)
Số có bốn chữ số tổng quát là 1000.a+b.100+c.10+d . Theo bài a+b+c+d=11 (1)
Cho a+c−b−d: 11=k (k E Z) (2)
a;b;c;d ≤ 9 => k E {0;1;-1}. Sở dĩ như vậy vì nếu k=2 => (a+c)-(b+d)=22 vô lí !
TH1: k=0 => a+c-(b+d)=11.k. (3)
Công (1);(3) ta được 2.(a+c)=11.(1+k) => 2.(a+c)=11 => a+c=5,5 vô lí nên loại.
TH2: k=-1 => 2.(a+c)=11.(1+k)=0 => a=c=0 vô lí nên loại.
TH3: k=1 . Lấy (1) trừ đi (3)
2.(b+d)=11.(1-k) => b=d=0 => nếu a=2 thi c=9
a=3 => c=8
a=4 => c=7
a=5 => c=6
a=6 => c=5
a=7 => c=4
a=8 => c=3
a=9 => c=2
Vậy các số cần tìm là: 2090;3080;4070;5060;6050;7040;8030;9020
=> có 8 số có 4 chữ số chia hết cho 11 và tổng các chữ số của nó cũng chia hết cho 11.
(x-3)(y+5)=-3=-1.3=-3.1
Ta có bảng sau:
x-3 | -1 | -3 |
x | 2 | 0 |
y+5 | 3 | 1 |
y | -2 | -4 |
Vậy ta có 2 cặp số nguyên x, y:Nếu x=2 thì y=-2 Nếu x=0 thì y=-4
xy - 3y = 5
y(x - 3) = 5
* TH1: x - 3 = -5 và y = -1
+) x - 3 = -5
x = -5 + 3
x = -2 (nhận)
* TH2: x - 3 = -1 và y = -5
+) x - 3 = -1
x = -1 + 3
x = 2 (nhận)
* TH3: x - 3 = 1 và y = 5
+) x - 3 = 1
x = 1 + 3
x = 4 (nhận)
* TH4: x - 3 = 5 và y = 1
+) x - 3 = 5
x = 5 + 3
x = 8 (nhận)
Vậy ta tìm được các cặp giá trị (x; y) thỏa mãn:
(-2; -1); (2; -5); (4; 5); (8; 1)
Do x là số nguyên nên 2x là số chẵn
⇒ 7 - 2x là số lẻ
* TH1: 7 - 2x = -3 và y - 3 = -4
+) 7 - 2x = -3
2x = 7 + 3
2x = 10
x = 10 : 2
x = 5
+) y - 3 = -4
y = -4 + 3
y = -1
* TH2: 7 - 2x = -1 và y - 3 = -12
+) 7 - 2x = -1
2x = 7 + 1
2x = 8
x = 8 : 2
x = 4
+) y - 3 = -12
y = -12 + 3
y = -9
* TH3: 7 - 2x = 1 và y - 3 = 12
+) 7 - 2x = 1
2x = 7 - 1
2x = 6
x = 6 : 2
x = 3
+) y - 3 = 12
y = 12 + 3
y = 15
* TH4: 7 - 2x = 3 và y - 3 = 4
+) 7 - 2x = 3
2x = 7 - 3
2x = 4
x = 4 : 2
x = 2
+) y - 3 = 4
y = 4 + 3
y = 7
Vậy ta tìm được các cặp giá trị (x; y) thỏa mãn:
(5; -1); (4; -9); (3; 15); (2; 7)
\(\Leftrightarrow2xy+2x-3y-3=12\)
\(\Leftrightarrow y\left(2x-3\right)=-\left(2x-15\right)\)
\(\Leftrightarrow y=\dfrac{-\left(2x-3\right)+12}{2x-3}=-1+\dfrac{12}{2x-3}\) (1)
Để y nguyên thì \(12⋮2x-3\Rightarrow\left(2x-3\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
\(\Rightarrow x=\left\{-\dfrac{9}{2};-\dfrac{3}{2};-\dfrac{1}{2};0;\dfrac{1}{2};1;2;\dfrac{5}{2};3;\dfrac{7}{2};\dfrac{9}{2};\dfrac{15}{2}\right\}\) Do x nguyên
\(\Rightarrow x=\left\{0;1;2;3\right\}\) Thay lần lượt các giá trị của x vào (1) để tìm các giá trị tương ứng của y
Bài 1
\(a,\frac{x}{6}=\frac{y}{-8}\)
=> đề thiếu :))
\(b,\frac{x}{2}=\frac{y}{5}\)và \(x+y=35\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{35}{7}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=5\\\frac{y}{5}=5\end{cases}\Rightarrow\hept{\begin{cases}x=10\\y=25\end{cases}}}\)
Bài 2 là bài đơn giản :)) e tự lm nha 1.1