Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x-1}{-3}=\frac{4}{7}\)
\(\Leftrightarrow7x-7=-12\)
\(\Leftrightarrow7x=-12+7\)
\(\Leftrightarrow7x=-5\)
\(\Leftrightarrow x=\frac{-5}{7}\)
vì \(x\in Z\Rightarrow x\in\left\{\varnothing\right\}\)
b) \(\frac{2}{3}=\frac{y+1}{-9}\)
\(\Leftrightarrow3y+3=-18\)
\(\Leftrightarrow3y=-18-3\)
\(\Leftrightarrow3y=-21\)
\(\Leftrightarrow y=-7\)
hok tốt!!
b) \(\frac{x}{4}=\frac{y}{3}\)và x+y=14
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\end{cases}}\)
Vậy x=8 và y=6
\(\frac{-3}{x+1}=\frac{4}{2-2x}\)
=> \(-3\left(2-2x\right)=4\left(x+1\right)\)
=> \(-6+12x=4x+4\)
=>\(12x-4x=6+4\)
=> \(8x=10\)
=> \(x=10:8\)
=> \(x=\frac{5}{4}\)
b) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{y}=\frac{4}{3}\)
\(\Rightarrow x=14:\left(4+3\right)\times4=8\)
\(\Rightarrow y=14-8=6\)
1. \(\frac{-7}{12}\)< \(\frac{x-1}{4}\)< \(\frac{2}{3}\)
=> \(\frac{-7}{12}\)< \(\frac{3.\left(x-1\right)}{12}\)< \(\frac{8}{12}\)
=> 3 . ( x - 1 ) thuộc { - 6 ; - 5 ; - 4 ; - 3 ; - 2 ; - 1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7}
Lập bảng tính giá trị x , cái này dễ lên bạn tự làm nha
1/ \(-\frac{7}{12}< \frac{x-1}{4}< \frac{2}{3}\)
hay \(\frac{-7}{12}< \frac{3.\left(x-1\right)}{12}< \frac{8}{12}\)
Vậy \(-7< 3.\left(x-1\right)< 8\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-5;-4;...;7\right\}\)
mà \(x\in Z\)nên \(3.\left(x-1\right)⋮3\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-3;0;3;6\right\}\)
hay \(x-1\in\left\{-2;-1;0;1;2\right\}\)
tới đây dễ rồi thì làm nốt nhé, để thời gian làm mấy câu sau!
a) Ta có : \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
\(\Rightarrow\frac{x}{3}-\frac{1}{5}=\frac{4}{y}\)
\(\Rightarrow\frac{x.5}{15}-\frac{3}{15}=\frac{4}{y}\)
\(\Rightarrow\frac{x.5-3}{15}=\frac{4}{y}\)
\(\Rightarrow\left(x.5-3\right).y=15.4\)
\(\Rightarrow x.5.y-3.5=60\)
\(\Rightarrow xy5-15=60\)
\(\Rightarrow xy5=60+15\)
\(\Rightarrow xy5=75\)
\(\Rightarrow xy=75\div5\)
\(\Rightarrow xy=15\)
\(\Rightarrow xy=1.15=3.5=\left(-15\right)\left(-1\right)=\left(-3\right)\left(-5\right)=\left(-5\right)\left(-3\right)=\left(-1\right)\left(-15\right)=5.3=15.1\)
Do đó x = 1 thì y = 15
x = 3 thì y =5
x = -15 thì y = -1
x = -3 thì y = -5
x = -5 thì y = -3
x = -1 thì y = -15
x = 5 thì y = 3
x = 15 thì y = 1
a) Ta có:+) \(\frac{12}{16}=\frac{-x}{4}\) <=> 12.4 = 16.(-x)
<=> 48 = -16x
<=> x = 48 : (-16) = -3
+) \(\frac{12}{16}=\frac{21}{y}\) <=> 12y = 21.16
<=> 12y = 336
<=> y = 336 : 12 = 28
+) \(\frac{12}{16}=\frac{z}{-80}\) <=> 12. (-80) = 16z
<=> -960 = 16z
<=> z = -960 : 16 = -60
b) Ta có: \(\frac{x+3}{7+y}=\frac{3}{7}\) <=> (x + 3).7 = 3(7 + y)
<=> 7x + 21 = 21 + 3y
<=> 7x = 3y
<=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{7}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\end{cases}}\)
Vậy ...
a. \(\frac{x}{9}< \frac{7}{x}\)=> \(x.x< 9.7\)
=> \(x^2< 63\)
\(\frac{7}{x}< \frac{x}{6}\)=> \(7.6< x.x\)
=> \(42< x^2\)
Vậy \(42< x^2< 63\)
=> \(x^2=49\)
=> \(x=7\)
b. \(\frac{3}{y}< \frac{y}{7}\)=> \(7.3< y.y\)
=> \(21< y^2\)
\(\frac{y}{7}< \frac{4}{y}\)=> \(y.y< 4.7\)
=> \(y^2< 28\)
Vậy \(21< y^2< 28\)
=> \(y^2=25\)
=> \(y=5\)