K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

<=> \(\frac{30}{6x}-\frac{2xy}{6x}=\frac{x}{6x}\)

<=> 30-2xy=x

<=>x+2xy=-30

<=>x(2y+1)=-30

Vì x,y thuộc Z

=> x,2y+1 thuộc Z

=> x, 2y+1 thuộc Ư(-30)={1;-1;2;-2;3;-3;5;-5;6;-6;10;-10;15;-15;30;-30}

Xét bảng ( tự xét nha)

KL: ...........

21 tháng 6 2016

a) (x+3) . (y+2) =1

<=> (x+3) và (y+2) \(\in\) Ư(1)

=> Ư(1) = {-1;1}

+ Nếu: -  x + 3 = 1 <=> x = -2

          -  y + 2 = 1 <=> x = -1

+Nếu: - x + 3 = -1 <=> x = -4

         - y + 2 = -1 <=> x = -3

21 tháng 6 2016

a) (x+3) . ( y+2) = 1

  =>  (x+3) thuộc Ư(1)

  => ( x+3) thuộc {-1;1}

+) x+3 = -1

=> x = -1-3 = -4

=> y+2 = 1 / -1 = -1 => y = -1-2 = -3

+) x+3 =1

=> x = 1-3 = -2

=> y+2 = 1/1 = 1

=> y = 1-2 = -1

Vậy ta có những cặp (x;y) cần tìm là: (-4;-3) và (-2;-1).

b) (2x-5) . ( y-6) = 17

=> (2x-5) thuộc Ư(17)

=> (2x-5) thuộc {-1;1;-17;17}

Ta có bảng sau:

2x-5           -1             1                 -17                      17 

x                2              3                -6                         11

y-6             -17            17               -1                         1

y                -11             23               5                          7

                 (t/m)          (t/m)           (t/m)                     (t/m) 

Vậy ta có ccs cặp (x;y) cần tìm là :(2;-11) ; (3;23) ; (-6;5) ; (11;7)

20 tháng 2 2020

1) Ta có: 6n-1=2(3n+2)-5

Để 6n-1 chia hết cho 3n+2 thì 2(3n+2)-5 phải chia hết cho 3n+2

=> -5 phải chia hết cho 3n+2 vì 2(3n+2) chia hết cho 3n+2
Vì \(n\inℤ\Rightarrow3n+2\inℤ\Rightarrow3n+2\inƯ\left(-5\right)=\left\{-5;-1;1;5\right\}\)

Ta có bảng giá trị

3n+2-5-115
3n-7-3-13
n\(\frac{-7}{3}\)-1\(\frac{-1}{3}\)1


Đối chiếu điều kiện \(x\inℤ\)
Vậy n=\(\pm1\)

20 tháng 2 2020

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

\(\Rightarrow\frac{1}{6}+\frac{y}{3}=\frac{5}{x}\)

\(\Rightarrow\frac{1}{6}+\frac{2y}{6}=\frac{5}{x}\)

\(\Rightarrow x\left(1+2y\right)=30\)

\(\Rightarrow x;1+2y\inƯ\left(30\right)=\left\{\pm1;\pm3;\pm5;\pm6;\pm10\pm30\right\}\)

Vì 2y là số chẵn => 1+2y là số lẻ

=> 1+2y là ước lẻ của 30

Ta có bảng:

x-5-3-1135
1+2y-6-10-3030106
2y-5-9-292995
y\(\frac{-5}{2}\)\(\frac{-9}{2}\)\(\frac{-29}{2}\)\(\frac{29}{2}\)\(\frac{9}{2}\)\(\frac{5}{2}\)

=> x;y \(\in\varnothing\)

20 tháng 2 2020

=) 6n-1 \(⋮\)3n+2

=) [ 6n-1-(3n+2)] \(⋮\)3n+2

=)  [ 6n-1-2(3n+2)]  \(⋮\)3n+2

=)  [ 6n-1-(6n+4)] \(⋮\)3n+2

=)  6n-1-6n-4 \(⋮\)3n+2

=) ( 6n-6n ) - ( 1 - 4 ) \(⋮\)3n+2

=)   -5 \(⋮\)3n+2

=) 3n+2 \(\in\)Ư ( -5 ) 

rồi bạn tìm ước của 5 và tìm n

20 tháng 2 2020

5/x - y/3 = 1/6

=) 5/x = 1/6 + y/3

=) 5/x = 3/18 + 6y/18   ( ta quy đồng)

=) 5/x = 3 + 6y / 18

sau đó đưa về dạng số và tìm x , y 

23 tháng 2 2020

câu 1 a) xy=-5 => (x,y)=(1,-5),(-1,5)  

b) xy=-5 với x>y=>x=1,y=-5

c)(x+1)(y-2)=-5 => * x+1=1 và y-2=-5  => x=-1, y=-3

                              * x+1=-5 và y-2=1=> x=-6 , y=3

câu 2 , câu 3 tương tự

a) Ta có: (x-3)(y+2)=5

nên (x-3) và (y+2) là ước của 5

\(\Leftrightarrow x-3;y+2\in\left\{1;-5;-1;5\right\}\)

Trường hợp 1: 

\(\left\{{}\begin{matrix}x-3=1\\y+2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x-3=5\\y+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x-3=-1\\y+2=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-7\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x-3=-5\\y+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(4;3\right);\left(8;-1\right);\left(2;-7\right);\left(-2;-3\right)\right\}\)

b) Ta có: (x-2)(y+1)=5

nên x-2 và y+1 là các ước của 5

\(\Leftrightarrow x-2;y+1\in\left\{1;-1;5;-5\right\}\)

Trường hợp 1: 

\(\left\{{}\begin{matrix}x-2=1\\y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x-2=5\\y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=0\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x-2=-1\\y+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x-2=-5\\y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(3;4\right);\left(7;0\right);\left(1;-6\right);\left(-3;-2\right)\right\}\)