Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x2y - x + xy = 6
=> x(xy - 1 ) + xy = 6
=> x(xy-1)+xy-1=5
=>(xy-1)(x-1)=5
=>xy-1 ; x-1 thuộc Ư (5)
P/S: lập bảng là ok
\(xy\left(x+1\right)-x-1=5\)\(\Leftrightarrow xy\left(x+1\right)-\left(x+1\right)=5\)
\(\Leftrightarrow\left(x+1\right)\left(xy-1\right)=5=5.1=1.5\)số nguyễn thị thêm (-) nữa
\(\orbr{\begin{cases}x+1=1=>x=0\\xy-1=5=>\left(loai\right)\end{cases}}\)\(\hept{\begin{cases}x+1=5=>x=4\\4y-1=5=>y=\frac{6}{4}\left(loai\right)\end{cases}}\)
\(\hept{\begin{cases}x+1=-1=>x=-2\\-2y-1=-5=>y=2\left(nhan\right)\end{cases}}\)
\(\hept{\begin{cases}x+1=-5=>x=-6\\-6.y-1=-1=>y=0\end{cases}}\)
KL:
x,y=(-2,2)
x,y=(-6,0)
1
C=3210=32.105=(32)105=9105
D=2310=23.105=(23)105=8105
Vì9105>8105
=>C>D
2
a)2x.(3y-2)+(3y-2)=6
(3y-2).(2x+1)=6
=>6\(⋮\)2x+1
=>2x+1\(\in\)Ư(6)={1;2;3;-1;-2;-3}
Mà 2x+1 là số lẻ
=>2x+1\(\in\){1;3;-1;-3}
Ta có bảng sau:
2x+1 | -1 | -3 | 1 | 3 |
3y-2 | -6 | -2 | 6 | 2 |
x | \(-1\notin N\) | \(-2\notin N\) | \(0\in N\) | \(1\in N\) |
y | \(\frac{-4}{3}\notin N\) | \(0\in N\) | \(\frac{8}{3}\notin N\) | \(\frac{4}{3}\notin N\) |
Vậy x\(\in\){0;1}
y\(\in\){0}
Phần này bạn lên học 24h nha Câu hỏi của Đỗ Thế Minh Quang
Chúc bn học tốt
a)x2(2y-1)-2y-1+3=0
x2(2y+1)-(2y+1)=-3
(2y+1)(x2-1)=-3=-1.3=-3.1=3.-1=-1.3
đến đây bn tự tính kết quả nha,các bài sau làm tương tự như vậy là được
bạn Nguyễn Thị Huyền làm sai
\(2x^2y-x^2-2y-2=0\Leftrightarrow x^2\left(2y-1\right)-2y-1-1=0\)=0
a/
$(x+1)+(x+2)+...+(x+100)=5750$
$(x+x+....+x)+(1+2+....+100)=5750$
Số lần xuất hiện của $x$:
$(100-1):1+1=100$
Suy ra:
$100x+(1+2+3+....+100)=5750$
$100x+100.101:2=5750$
$100x+5050=5750$
$100x=700$
$x=700:100$
$x=7$
b/
$x^2y-x+xy=6$
$x(xy-1+y)=6$
Do $x,y$ nguyên nên $xy-1+y$ cũng là số nguyên. Mà tích $x(xy-1+y)=6$ nên ta có các TH sau:
TH1: $x=1, xy-1+y=6$
$\Rightarrow y-1+y=6\Rightarrow y=\frac{7}{2}$ (loại)
TH2: $x=-1, xy-1+y=-6$
$\Rightarrow -y-1+y=-6\Rightarrow -1=-6$ (vô lý - loại)
TH3: $x=2, xy-1+y=3$
$\Rightarrow 2y-1+y=3\Rightarrow 3y=4\Rightarrow y=\frac{4}{3}$ (loại)
TH4: $x=-2, xy-1+y=-3$
$\Rightarrow -2y-1+y=-3$
$\Rightarrow -y-1=-3\Rightarrow y=2$ (tm)
TH5: $x=3, xy-1+y=2\Rightarrow 3y-1+y=2$
$\Rightarrow 4y=3\Rightarrow y=\frac{3}{4}$ (loại)
TH6: $x=-3, xy-1+y=-2\Rightarrow -3y-1+y=-2$
$\Rightarrow -2y=-1\Rightarrow y=\frac{1}{2}$ (loại)
TH7: $x=6, xy-1+y=1$
$\Rightarrow 6y-1+y=1\Rightarrow 7y=2\Rightarrow y=\frac{2}{7}$ (loại)
TH8: $x=-6, xy-1+y=-1$
$\Rightarrow -6y-1+y=-1$
$\Rightarrow -5y=0\Rightarrow y=0$ (tm)
giúp mk =.="
\(3x^2y-x+xy=6\)
\(\Rightarrow xy\left(3x+1\right)=x+6\)
\(\Rightarrow y=\dfrac{x+6}{x\left(3x+1\right)}\left(x\ne0\right)\)
-Vì x,y là các số nguyên \(\Rightarrow\left(x+6\right)⋮\left[x\left(3x+1\right)\right]\)
\(\Rightarrow\left(x+6\right)⋮x\) và \(\left(x+6\right)⋮\left(3x+1\right)\)
\(\Rightarrow6⋮x\) và \(\left(3x+18\right)⋮\left(3x+1\right)\)
\(\Rightarrow x\inƯ\left(6\right)\) và \(\left(3x+1+17\right)⋮\left(3x+1\right)\)
\(\Rightarrow x\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\) và \(17⋮\left(3x+1\right)\)
\(\Rightarrow x\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\) và \(3x+1\inƯ\left(17\right)\)
\(\Rightarrow x\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\) và \(3x+1\in\left\{1;17;-1;-17\right\}\)
\(\Rightarrow x\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\) và \(x=-6\)
\(\Rightarrow x=-6\Rightarrow y=\dfrac{-6+6}{-6.\left[3.\left(-6\right)+1\right]}=0\)