K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 1 2024

Lời giải:

Gọi $d=ƯCLN(x+2022, x+2015)$

$\Rightarrow (x+2022)-(x+2015)\vdots d$

$\Rightarrow 7\vdots d$

$\Rightarrow d=1$ hoặc $d=7$

Nếu $d=1$ thì $x+2022, x+2015$ nguyên tố cùng nhau

$\Rightarrow (x+2022)^2, (x+2015)^3$ nguyên tố cùng nhau 

$\Rightarrow$ để $(x+2022)^2=64(x+2015)^3$ thì:

$x+2015=1, (x+2022)^2=64$

$\Rightarrow x=-2014$ (tm)

Nếu $d=7$ thì đặt $x+2022=7a, x+2015=7b$ với $a,b$ nguyên tố cùng nhau.

Khi đó: $(7a)^2=64(7b)^3$

$\Rightarrow a^2=448b^3$
Vì $(a,b)=1$ nên $b=1; a^2=448$ (vô lý vì 448 không là scp)

Vậy.......

30 tháng 12 2015

tick mk nha các bn ơi

30 tháng 12 2015

xạo vừa vừa thôi mấy mắm ơi, chtt đâu có đâu

5 giờ trước (15:19)

O biết






5 giờ trước (16:07)

Sửa đề: \(\frac{6}{\left(x-2\right)^2+2}=\left|y-2022\right|+\left|y-2025\right|\)

Ta có: \(\left(x-2\right)^2+2\ge2\forall x\)

=>\(\frac{6}{\left(x-2\right)^2+2}\le\frac62=3\forall x\)

\(\left|y-2022\right|+\left|y-2025\right|=\left|y-2022\right|+\left|2025-y\right|\ge\left|y-2022+2025-y\right|=3\forall y\)

\(\frac{6}{\left(x-2\right)_{}^2+2}=\left|y-2022\right|+\left|y-2025\right|\)

nên \(\frac{6}{\left(x-2\right)^2+2}=\left|y-2022\right|+\left|y-2025\right|=3\)

=>\(\begin{cases}\left(x-2\right)^2+2=\frac63=2\\ \left(y-2022\right)\left(y-2025\right)\le0\end{cases}\Rightarrow\begin{cases}x-2=0\\ 2022\le y\le2025\end{cases}\)

=>\(\begin{cases}x=2\\ y\in\left\lbrace2022;2023;2024;2025\right\rbrace\end{cases}\)

17 tháng 11 2016

khá là "dễ" chỉ cần nhân tùm lum hết ra r` phân tích lại dc

pt<=>-(x+2006)(64x2+256959x+257921626)=0

<=>x=-2006

3 tháng 7 2016

Ta có:

(x - y) + (y - z) + (z - x)

= x - y + y - z + z - x

= 0

Do |x - y| + |y - z| + |z - x| có cùng tính chẵn lẻ với (x - y) + (y - z) + (z - x)

Mà (x - y) + (y - z) + (z - x) chẵn => |x - y| + |y - z| + |z - x| chẵn

Vậy ta không tìm được giá trị nguyên của x, y, z thỏa mãn đề bài

Ủng hộ mk nha ^_-

3 tháng 7 2016

x;y;z có vai trò tương đương nên giả sử \(x\ge y\ge z\)thì PT đê bài :

<=> x - y + y - z -(z - x) =2015

<=> 2(x - z) =2015 (*)

x, z nguyên thì Vế trái của (*) là chẵn không thể = Vế phải của (*) là 1 số lẻ.

Nên, không có giá trị nguyên nào của x; y; z thỏa mãn đề bài.