Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2=0\)
\(\Rightarrow x^2=0^2\)
\(\Rightarrow x=0\)
-----------
\(x^2=16\)
\(\Rightarrow x^2=\left(\pm4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x^2=\left(-4\right)^2\\x^2=4^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)
\(a,\left(-31\right).\left(x+7\right)=0\\ \Rightarrow x+7=0\\ \Rightarrow x=-7\\ b,\left(8-x\right).\left(x+13\right)=0\\ \Rightarrow\left[{}\begin{matrix}8-x=0\\x+13=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-13\end{matrix}\right.\\ c,\left(x^2-25\right)\left(3-x\right)=0\\ \Rightarrow\left(x-5\right)\left(x+5\right)\left(3-x\right)=0\\\Rightarrow \left[{}\begin{matrix}x-5=0\\x+5=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\\x=3\end{matrix}\right.\\ d,\left(x-3\right)\left(x^2+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x^2=-4\left(loại\right)\end{matrix}\right.\\ \Rightarrow x=3\)
nếu x.2 mà để như vậy thì ko hợp lý thì 2 luôn đứng trước x nếu ghi sát nên chắc đề là x^2
\(\left(x^2-5\right)\left(x^2-25\right)\)
để\(\left(x^2-5\right)\left(x^2-25\right)\)là số nguyên âm
\(\Rightarrow\left(x^2-5\right)\left(x^2-25\right)< 0\)
=> x^2-5 và x^2-25 khác dấu
\(th1\orbr{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2>5\\x^2< 25\end{cases}}}\Leftrightarrow5< x^2< 25\left(tm\right)\)
\(th2\orbr{\begin{cases}x^2-5< 0\\x^2-25>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2< 5\\x^2>25\end{cases}}}\Leftrightarrow25< x^2< 5\left(vl\right)\)
theo đề x là số nguyên => x^2 là số chính phương thỏa mãn \(5< x^2< 25\)
\(\Rightarrow x^2=9;x^2=16\)
\(\hept{\begin{cases}x^2=9\Leftrightarrow x=\pm3\\x^2=16\Leftrightarrow x=\pm4\end{cases}}\)
vậy với \(x=\pm3;x=\pm4\)thì \(\left(x^2-5\right)\left(x^2-25\right)\)là số nguyên âm
a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+7 | 1 | -1 | 2 | -2 |
x | -6 | -8 | -5 | -9 |
\(a,\left(8+x\right)\left(6-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}8+x=0\\6-x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-8\\x=6\end{matrix}\right.\\ b,x^2-5x=0\\ \Rightarrow x\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
a) (8+x).(6-x)=0
<=> 8+x = 0 hoặc 6-x = 0
=> x = -8 hoặc x = 6
b) c) x^2 - 5x=0
<=> x^2 = 0 hoặc -5x = 0
=> x = 0 hoặc x = 5
Lời giải:
$(x^2-15)(x^2-20)<0$. Mà $x^2-15> x^2-20$ nên: $x^2-15>0$ và $x^2-20<0$
$x^2-20<0\Rightarrow x^2< 20< 25$
$\Rightarrow -5< x< 5$. Mà $x$ nguyên nên $x\in \left\{-4; -3; -2; -1; 0; 1; 2; 3; 4\right\}$
Mà $x^2-15>0$ nên $x\in \left\{-4; 4\right\}$
Lời giải:
a. $(x^2-9)(5x+15)=0$
$\Rightarrow x^2-9=0$ hoặc $5x+15=0$
Nếu $x^2-9=0$
$\Rightarrow x^2=9=3^2=(-3)^2$
$\Rightarrow x=3$ hoặc $-3$
Nếu $5x+15=0$
$\Rightarrow x=-3$
b.
$x^2-8x=0$
$\Rightarrow x(x-8)=0$
$\Rightarrow x=0$ hoặc $x-8=0$
$\Rightarrow x=0$ hoặc $x=8$
c.
$5+12(x-1)^2=53$
$12(x-1)^2=53-5=48$
$(x-1)^2=48:12=4=2^2=(-2)^2$
$\Rightarrow x-1=2$ hoặc $x-2=-2$
$\Rightarrow x=3$ hoặc $x=0$
d.
$(x-5)^2=36=6^2=(-6)^2$
$\Rightarrow x-5=6$ hoặc $x-5=-6$
$\Rightarrow x=11$ hoặc $x=-1$
e.
$(3x-5)^3=64=4^3$
$\Rightarrow 3x-5=4$
$\Rightarrow 3x=9$
$\Rightarrow x=3$
f.
$4^{2x}+2^{4x+3}=144$
$2^{4x}+2^{4x}.8=144$
$2^{4x}(1+8)=144$
$2^{4x}.9=144$
$2^{4x}=144:9=16=2^4$
$\Rightarrow 4x=4\Rightarrow x=1$