Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A nguyên thì: \(\hept{\begin{cases}\left(x+1\right)⋮\left(x^2+x+1\right)\\\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\end{cases}\Leftrightarrow}\hept{\begin{cases}x\left(x+1\right)=\left(x^2+x\right)⋮\left(x^2+x+1\right)\\\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\end{cases}}\)
\(\Rightarrow\left(x^2+x+1\right)-\left(x^2+x\right)⋮\left(x^2+x+1\right)\)
\(\Leftrightarrow1⋮\left(x^2+x+1\right)\Rightarrow\left(x^2+x+1\right)\inƯ\left(1\right)\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)
\(\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy khi x = 0 hoặc x = -1 thì A nguyên
x^2+(a-5)x-5a+2=x^2+(b+c)x+bc
=> \(\hept{\begin{cases}a-5=b+c\\2-5a=bc\end{cases}\Leftrightarrow}\)
a: Để 5/x+3 là số nguyên thì \(x+3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-2;-4;2;-8\right\}\)
b: Để \(\dfrac{x^2}{x+1}\) là số nguyên thì \(x^2-1+1⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1\right\}\)
hay \(x\in\left\{0;-2\right\}\)