Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{n+2}{n-3}=\frac{n-3+5}{n-3}=\frac{n-3}{n-3}+\frac{5}{n-3}=1+\frac{5}{n-3}\)
Suy ra n-3\(\in\)Ư(5)
Ư(5)là:[1,-1,5,-5]
Do đó ta có bảng sau:
n-3 | 1 | -1 | 5 | -5 |
n | 4 | 2 | 8 | -2 |
Vậy n=4;2;8;-2
n + 2 ⋮ n - 3 <=> ( n - 3 ) + 5 ⋮ n - 3
Vì n - 3 ⋮ n - 3 . Để ( n - 3 ) + 5 ⋮ n - 3 thì 5 ⋮ n - 3 => n - 3 ∈ Ư ( 5 ) = { + 1 ; + 5 }
Ta có : n - 3 = 1 => n = 1 + 3 = 4 ( nhận )
n - 3 = - 1 => n = - 1 + 3 = 2 ( nhận )
n - 3 = 5 => n = 5 + 3 = 8 ( nhận )
n - 3 = - 5 => n = - 5 + 3 = - 2 ( nhận )
Vậy n ∈ { + 2 ; 4 ; 8 }
\(\frac{n+2}{n-3}=\frac{n-3+5}{n-3}=1+\frac{5}{n-3}\) => \(n-3\inƯ\left(5\right)\)=> \(n-3\in\left\{\pm1;\pm5\right\}\)
=> \(n\in\left\{4;2;8;-2\right\}\)
a: =>3x-3+5 chia hết cho x-1
=>x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;6;-4}
b: =>x(x+2)-7 chia hết cho x+2
=>x+2 thuộc {1;-1;7;-7}
=>x thuộc {-1;-3;5;-9}
\(3x+2⋮x-1\)
\(\Leftrightarrow3\left(x-1\right)+5⋮x-1\)
\(\Leftrightarrow5⋮x-1\)
\(\Leftrightarrow\left(x-1\right)\inƯ\left(5\right)\)
\(\Leftrightarrow\left(x-1\right)\in\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow x\in\left\{-4;0;2;6\right\}\)
Vậy để \(3x+2⋮x-1\) thì \(x\in\left\{-4;0;2;6\right\}\)
b) \(x^2+2x-7⋮x+2\)
\(\Leftrightarrow x\left(x+2\right)-7⋮x+2\)
\(\Leftrightarrow7⋮x+2\)
\(\Leftrightarrow\left(x+2\right)\inƯ\left(7\right)\)
\(\Leftrightarrow\left(x+2\right)\in\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow x\in\left\{-9;-3;-1;5\right\}\)
Vậy để \(x^2+2x-7⋮x+2\) thì \(x\in\left\{-9;-3;-1;5\right\}\)
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)
(n+2) chia hết cho (n-3)
=>n-3+5 chia hết cho n-3
=> 5 chia hết cho n-3
=>n-3 E U(5)={1;-1;5;-5}
=>n-3=1
n=4
n-3=-1
n=2
n-3=5
n=8
n-3=-5
n=-2
vay x E {4;2;8;-2}
n+2 chia hêt cho n-3
n-3+5 chia hết cho n-3
Vì n-3 chia hết cho n-3
=> 5 chia hết cho n-3
=> n-3 thuộc Ư(5)
=> n-3 thuộc {1; -1; 5; -5}
=> n thuộc {4; 2; 8; -2}
a, n+2 chia hết cho n-3
Suy ra (n-3)+5 chia hết cho n-3
Suy ra 5 chia hết cho n-3 vì n-3 chia hết cho n-3
suy ra n-3 \(\in\)Ư(5)={-1;-5;1;5}
Ta có bảng giá trị
n-3 | -1 | -5 | 1 | 5 |
n | 2 | -2 | 4 | 8 |
Vậy n={2;-2;4;8}
b, ta có Ư(13)={-1;-13;1;13}
ta có bảng giá trị
x-3 | -1 | -13 | 1 | 13 |
x | 2 | -10 | 4 | 16 |
Vậy n={2;-10;4;16}
c, ta có Ư(111)={-1;-111;;-3;-37;1;111;3;37}
ta có bảng giá trị
x-2 | -1 | -111 | -3 | -37 | 1 | 3 | 111 | 37 |
x | 1 | -99 | -1 | -39 | 3 | 5 | 113 | 39 |
Vậy n={1;-99;-1;-39;3;5;113;39}
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
=>x+3-1 chia hết cho x+3
=>x+3 thuộc {1;-1}
=>x thuộc {-2;-4}