Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow y\left(x+1\right)+2\left(x+1\right)+9=0\)
\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=-9\)
Để x;y nguyên thì:
\(\left\{{}\begin{matrix}x+1=3\\y+2=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=-3\\y+2=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=1\\y+2=-9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-11\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=-9\\y+2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=-1\\y+2=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1=9\\y+2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-3\end{matrix}\right.\)
\(a,\left(8-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}8-x=0\\x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-5\end{matrix}\right.\\ b,2x\left(x+81\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=0\\x+81=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-81\end{matrix}\right.\)
a)\(\left(8-x\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}8-x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-5\end{matrix}\right.\)
b)\(2x\left(x+81\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x+81=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-81\end{matrix}\right.\)
x(x + 3) < 0
Ta có 2 trường hợp :
\(\left(1\right)\hept{\begin{cases}x< 0\\x+3>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 0\\x>-3\end{cases}}\Rightarrow-3< x< 0\)
\(\left(2\right)\hept{\begin{cases}x>0\\x+3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>0\\x< -3\end{cases}}\) => Loại
Vậy -3 < x < 0
de x . ( x + 3 ) < 0
\(\Rightarrow\)x = 0 hoac x + 3 = 0