Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để B \(\in\)Z
=> \(x+1⋮x+5\)
=> \(x+5-4⋮x+5\)
Ta có : Vì \(x+5⋮x+5\)
=> \(-4⋮x+5\)
=> \(x+5\in-4\)
=> \(x+5\in\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét 6 trường hợp
\(x+5\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(x\) | \(-4\) | \(-6\) | \(-3\) | \(-7\) | \(-1\) | \(-9\) |
Vậy \(B\inℤ\Leftrightarrow x\in\left\{-4;-6;-3;-7;-1;-9\right\}\)
\(B=\frac{x+1}{x+5}=\frac{x+5-4}{x+5}=1-\frac{4}{x+5}.\)
Để \(B\in Z\Leftrightarrow\frac{4}{x+5}\in Z\)\(\Rightarrow4\)\(⋮\)\(x+5\)
\(\Rightarrow x+5\inƯ_4\)Mà \(Ư_4=\left\{\pm1;\pm2;\pm4\right\}\)
TH1 : \(x+5=1\Rightarrow x=-4\)
Th2 : \(x+5=-1\Rightarrow x=-6\)
TH3 : \(x+5=2\Rightarrow x=-3\)
TH4 : \(x+5=-2\Rightarrow x=-7\)
TH5 : \(x+5=4\Rightarrow x=-1\)
TH6 : \(x+5=-4\Rightarrow x=-9\)
\(KL:x\in\left\{-4;-6;-3;-7;-1;-9\right\}\)
Ta có : \(\frac{10x+6}{x+2}=\frac{10x+20-14}{x+2}=\frac{10\left(x+2\right)}{x+2}-\frac{14}{x+2}=10-\frac{14}{x+2}\)
Để phân số nguyên thì : 14 chia hết cho x + 2
=> x + 2 thuộc Ư(14)
cứ thế lập banngr là ra
Để \(\frac{5}{x+2}\) nguyên thì 5 chia hết cho x + 2
=> x + 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x + 2 | -5 | -1 | 1 | 5 |
x | -7 | -3 | -1 | 3 |
A =15/x+2 + 14/x+2 = 29/x+2
b) x+2 là U(29) = { -1;1;-29;29}
=> x ={ -3;-1;-31;27}
Để \(P=\frac{x-1}{x-3}\left(x∈Z ; x ≠0\right)\) nhận giá trị nguyên
=> x - 1 ⋮ x - 3
=> ( x - 3 ) + 2 ⋮ x - 3
Mà x - 3 ⋮ x - 3 ∀ x ∈ Z
=> 2 ⋮ x - 3
=> x - 3 ∈ Ư(2)
Ta có bảng ;
x-3 | -2 | -1 | 1 | 2 |
x | -1 | 2 | 4 | 5 |
\(P=\frac{x-1}{x-3}\) | \(\frac{1}{2}\)( loại ) ( do P nhận giá trị nguyên ) | -1 ( t/m ) | 3 ( t/m ) | 2 ( t/m ) |
Để P nhận giá trị nguyên lớn nhất => P = 3 và x = 4
VÌ ( 3 - x )2 ≥ 0 ∀ x ∈ Z
=> ( 3 - x )2 - 4 ≥ 0 - 4
=> Để A = ( 3 - x )2 - 4 nhận giá trị nhỏ nhất thì A = -4
<=> ( 3 - x )2 = 0
<=> 3 - x = 0
<=> x = 3
\(A=\frac{2x-6}{x-1}\)
\(\Leftrightarrow A=\frac{2x-2-4}{x-1}=2-\frac{4}{x-1}\)
Để \(A\in Z\)thì \(\frac{4}{x-1}\in Z\)
\(\Rightarrow\left(x-1\right)\inƯ_4=\left(\pm1;\pm2;\pm4\right)\)
\(\Rightarrow x=\left\{2;3;5;0;-1;-3\right\}\)
Vậy ..........
\(E=\frac{5-x}{x-2}=\frac{3+2-x}{x-2}=\frac{3-x+2}{x-2}\)\(=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-\frac{x-2}{x-2}=\frac{3}{x-2}-1\)
E có giá trị nguyên \(\Leftrightarrow\) \(\frac{3}{x-2}-1\) có giá trị nguyên \(\Leftrightarrow\frac{3}{x-2}\) có giá trị nguyên
\(\Leftrightarrow\) x - 2 \(\in\) Ư(3) \(\Leftrightarrow\) x - 2 \(\in\) {-1 ; 1 ; -3 ; 3}
\(\Leftrightarrow\) x \(\in\) {1 ; 3 ; -1 ; 5}
\(E=\frac{5-x}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-1\)
Để A có giá trị nguyên thì \(\frac{3}{x-2}\) phải có giá trị nguyên
=> 3 chia hết cho x-2 => \(x-2\inƯ\left(3\right)\Rightarrow x-2\in\left\{-1;1;-3;3\right\}\Rightarrow x\in\left\{1;3;-1;5\right\}\)
Vậy với x= 1 ; x= 3 ; x= -1 ; x= 5 thì Ecó giá trị nguyên
a) \(C=\frac{5}{x-2}\)
=> x-2 thuộc Ư(5) = {-1,-5,1,5}
Ta có bảng :
x-2 | -1 | -5 | 1 | 5 |
x | 1 | -3 | 3 | 7 |
Vậy x = {-3,1,3,7}
b) Ta có : \(\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)
=> x-4 thuộc Ư(9) = {-1,-3,-9,1,3,9}
Ta có bảng :
x-4 | -1 | -3 | -9 | 1 | 3 | 9 |
x | 3 | 1 | -5 | 5 | 7 | 13 |
Vậy x = {-5,1,3,5,7,13}
Để biểu thức trên nguyên
=> x+6 chia hết cho x+2
=> x+2+4 chia hết cho x+2
Vì x+2 chia hết cho x+2
=> 4 chia hết cho x+2
=> x+2 thuộc Ư(4)
KL: x thuộc {-1; -3; 0; -4; 2; -6}