Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,2^x=16=2^4\Rightarrow x=4\\ b,3^{x+1}=9^x=3^{2x}\\ \Rightarrow x+1=2x\Rightarrow x=1\\ c,2^{3x+2}=4^{x+5}=2^{2\left(x+5\right)}\\ \Rightarrow3x+2=2x+10\Rightarrow x=8\\ d,3^{2x-1}=243=3^5\\ \Rightarrow2x-1=5\Rightarrow x=3\\ 2,\\ a,2^{225}=8^{75}< 9^{75}=3^{150}\\ b,2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\\ c,99^{20}=\left(99^2\right)^{10}< \left(99\cdot101\right)^{10}=9999^{10}\\ 3,\\ a,12^8\cdot9^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}=\left(2\cdot3^2\right)^{16}=18^{16}\\ b,75^{20}=\left(3\cdot5^2\right)^{20}=3^{20}\cdot5^{40}=\left(3^{20}\cdot5^{10}\right)\cdot5^{30}=\left(3^2\cdot5\right)^{10}\cdot5^{30}=45^{10}\cdot5^{30}\)
Bài 1:
a) \(\Rightarrow2^x=2^4\Rightarrow x=4\)
b) \(\Rightarrow3^{x+1}=3^{2x}\Rightarrow x+1=2x\Rightarrow x=1\)
c) \(\Rightarrow2^{3x+2}=2^{2x+10}\Rightarrow3x+2=2x+10\Rightarrow x=8\)
d) \(\Rightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow x=3\)
Bài 2:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Bài 3:
a) \(12^8.9^{12}=\left(4.3\right)^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)
b) \(75^{20}=\left(75^2\right)^{10}=5625^{10}=\left(45.125\right)^{10}=45^{10}.125^{10}=45^{10}.5^{30}\)
a) 2x = 16 <=>x=8
b) 3x+1 = 9x <=>9x-3x=1
<=>6x=1 <=>x=1/6
c) 23x+2 = 4x+5 <=>23x-4x=5-2
<=>19x=3 <=>x=3/19
d) 32x-1 = 243 <=>32x=244
<=>x=61/8
a/ 2x=16
x=8
b/ 3x+1=9x
3x-9x=-1
-6x=-1
x=1/6
c/ 23x+2=4x
23x-4x=-2
19x=-2
x=-2/19
d/ 32x-1=243
32x=244
x=61/8
a) 2ˣ + 2ˣ⁺³ = 72
2ˣ.(1 + 2³) = 72
2ˣ.9 = 72
2ˣ = 72 : 9
2ˣ = 8
2ˣ = 2³
x = 3
b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)
Ta có:
x - 2 = x + 1 - 3
Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ x ∈ {-4; -2; 0; 2}
Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên
c) P = |2x + 7| + 2/5
Ta có:
|2x + 7| ≥ 0 với mọi x ∈ R
|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R
Vậy GTNN của P là 2/5 khi x = -7/2
a) x - 8 - (12 - 2x) = -20
=> x - 8 - 12 + 2x = -20
=> (x + 2x) + (-8 - 12) = -20
=> 3x - 20 = -20
=> 3x = 0 => x = 0
b) -27 + (x + 8) - ( +11) = 2
=> -27 + x + 8 - 11 = 2
=> -27 + x = 2 + 11 - 8
=> -27 + x = 5
=> x = 5 - (-27) = 32
c) -2x - 16 = -2 - (3x + 9)
=> -2x - 16 = -2 - 3x - 9
=> -2x - 16 + 2 + 3x + 9 = 0
=> (-2x + 3x) + (-16 + 2 + 9) = 0
=> x - 5 = 0
=> x = 5
\(a,x-8-\left(12-2x\right)=-20\)
\(x-8-12+2x=-20\)
\(x+2x-8-12=-20\)
\(3x-20=-20\)
\(3x=-20+20\)
\(3x=0\)
\(x=0\)
\(b,-27+\left(x+8\right)-\left(+11\right)=2\)
\(-27+x+8-11=2\)
\(x-27+8-11=2\)
\(x-30=2\)
\(x=2+30\)
\(x=32\)
\(c,-2x-16=2-\left(3x+9\right)\)
\(-2x-16=2-3x-9\)
\(-2x+3x=2-9+16\)
\(x=9\)
Học tốt
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
a, \(3^{2x+2}=9^{10}\\ 3^{2x+2}=\left(3^2\right)^{10}\\ 3^{2x+2}=3^{20}\\ \Rightarrow2x+2=20\\ \Rightarrow2x=18\\ \Rightarrow x=9\)Vậy x = 9
b, \(3^{3x}=27^{13}\\ 3^{3x}=\left(3^3\right)^{13}\\ 3^{3x}=3^{39}\\ \Rightarrow3x=39\\ \Rightarrow x=13\)Vậy x = 13
c, \(2^x=4^6\cdot16^3\\ 2^x=\left(2^2\right)^6\cdot\left(2^4\right)^3\\ 2^x=2^{12}\cdot2^{12}\\ 2^x=2^{24}\\ \Rightarrow x=24\)Vậy x = 24
d, \(2^x=32^5\cdot64^6\\ 2^x=\left(2^5\right)^5\cdot\left(2^6\right)^6\\ 2^x=2^{25}\cdot2^{36}\\ 2^x=2^{61}\\ \Rightarrow x=61\)Vậy x = 61