Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Vì \(\frac{13}{x-1}\)thuộc Z nên 13 chia hết cho x-1
Do đó x-1 thuộc Ư(13)={1; 13}
Suy ra x thuộc {0;12}
Vậy x thuộc {0; 12}
\(\dfrac{2x+4}{2x+1}=\dfrac{2x+1+3}{2x+1}=1+\dfrac{3}{2x+1}\Rightarrow2x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2x+1 | 1 | -1 | 3 | -3 |
x | 0 | -1 | 1 | -2 |
Nguyễn Huy Tú biến đổi sai
\(\frac{x+2}{2x+1}=\frac{2.\left(x+2\right)}{2.\left(2x+1\right)}=\frac{2x+4}{4x+2}\)Chứ
5x +2 = 5(x+1) - 3 chia hết cho x +1
=> x +1 thuộc U(3) = {-3;-1;1;3}
+ x +1 = -3 => x =-4
+x+1 =-1 => x =-2
+x+1 = 1 => x =0
+x+1 =3 => x =2
Vậy x thuộc {-4;-2;0;2}
\(\dfrac{x-1-1}{x-1}=1-\dfrac{1}{x-1}\Rightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)