\(a,\frac{5}{x^2+1}\)   ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

\(a,\frac{5}{x^2+1}\in Z\Leftrightarrow\left(x^2+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow x^2\in\left\{-2;0;-6;4\right\}\)

Mà \(x^2\) là số chính phương \(\Rightarrow x^2=0;4\)

\(\Rightarrow x=0;2\)

Vậy x = 2 thì phương trình có giá trị nguyên

2 tháng 1 2019

\(b,\frac{x^2-59}{x+8}=\frac{x^2-64+5}{x+8}=\frac{\left(x-8\right)\left(x+8\right)+5}{x+8}=\left(x-8\right)+\frac{5}{x+8}\)

Vì \(x\inℤ\Rightarrow\left(x-8\right)\in Z\)

Do đó : Phương trình có giá trị nguyên khi \(\frac{5}{x+8}\inℤ\)

\(\Leftrightarrow5⋮x+8\)     (  vì \(x+8\in Z\) )

\(\Leftrightarrow x+8\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow x=-9;-7;-13;-3\)

Vậy với x = -9;-7;-13;-3 thì phương trình có giá trị nguyên 

23 tháng 11 2016

a, 2x-1 thuộc ước của 2,rồi giải ra  

b,c tương tự

d\(\frac{x^2-64-123}{x+8}=\frac{\left(x+8\right)\left(x-8\right)-123}{x+8}=x-8-\frac{123}{X+8}\) .........rồi làm tương tự như câu a,,,,,,,,,,,,còn câu e cũng gần giống câu d

23 tháng 11 2016

mik cảm ơn nhiều nhé mik cx vừa lam ra ạ

8 tháng 3 2019

Cho đường tròn (o)  Và điểm A khánh  nằm ngoài đường tròn từ A vê 2 tiếp tuyến AB, AC với đường tròn . D nằm giữa A và E tia phân giác của góc DBE cắt DE ở I 

a)  chứng minh rằng AB2 =AD * AE

b) Chứng minh rằng BD/BE=CD/CE

14 tháng 8 2016
  • Để B có giá trị nguyên thì 2x-5 chia het 3x-9

                                               =>  6x-15 chia hết 3x-9

                                               =>  6x-18+18-15 chia hết 3x-9

                                               =>  2.[3x-9]+3 chia hết 3x-9

                                               =>  3 chia hết cho 3x-9

                                               =>  \(3x-9\inƯ\left[3\right]=\left\{-1;1;3;-3\right\}\) 

                                               =>   \(x\in\left\{4;2\right\}\)

14 tháng 8 2016
  • Để A có giá trị nguyên thì 3x-4 chia het 2+x

                                                   => 3x-4 chia hết x+2

                                                   => 3x+6-6-4 chia hết x+2

                                                   => 3.[x+2] -6-2 chia hết x+2

                                                   => -8 chia hết x+2

                                                    => \(x+2\inƯ\left[-8\right]=\left\{-1;1;2;-2;4;-4;-8;8\right\}\)

                                                    =>  \(x\in\left\{-3;-1;0;-4;2;-6;-10;6\right\}\)

19 tháng 10 2018

a) Gọi biểu thức trên là A. Để A nguyên thì \(5⋮2x+1\Leftrightarrow2x+1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)

Ta có bảng: 

2x + 1-5-115
x -3 -1 02

Do vậy \(x=\left\{-3;-1;0;2\right\}\)

19 tháng 10 2018

b) Đặt \(A=\frac{x^3-3x^2+5}{x+2}=\frac{x^3+2x^2-5x^2-10x+10x+20-15}{x+2}\)

\(=\frac{x^2.\left(x+2\right)-5x.\left(x+2\right)+10.\left(x+2\right)-15}{x+2}=\frac{\left(x+2\right).\left(x^2-5x+10\right)-15}{x+2}\)

\(=x^2-5x+10+\frac{15}{x+2}\)

Để A nguyên

=> 15/x+2 nguyên ( do x nguyên nên x2 -5x + 10 cũng nguyên)

=> 15 chia hết cho x + 2

=> x + 2 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}

...

bn tự xét nha

21 tháng 7 2020

\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)

a) ĐKXĐ : \(x\ne\pm2\)

\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)

\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{x^2-4}\)

\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{5x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x-23\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{5x^2-10x}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x^2-17x-46\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{5x^2-10x-\left(3x^2-17x-46\right)-40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{5x^2-10x-3x^2+17x+46-40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{2x^2+7x+6}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x+2\right)\left(2x+3\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x+3}{x-2}\)

b) x2 - 1 = 0 <=> x2 = 1 <=> x = ±1

Với x = 1 

\(B=\frac{2\cdot1+3}{1-2}=-5\)

Với x = -1

\(B=\frac{2\cdot\left(-1\right)+3}{\left(-1\right)-2}=-\frac{1}{3}\)