Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng biến đổi tương đương chứng minh được :
( x2 + x+2)2 = x4 + 2x3 + 5x2 +4x+4 > x4 +2x3 +2x2 +x+3 > x4 + 2x3 +x2 = ( x2 +x)2
=) x4 +2x3 +2x2 +x+3 = ( x2 +x+1)2 (=) x4 +2x3 +2x2 +x+3 = x4 +2x3 +3x2 +2x+1
(=) x2 +x-2=0 (=) x=1 hoặc x=-2
a/ ta có:
\(x\sqrt{2y-1}+y\sqrt{2x-1}=\sqrt{x}.\sqrt{2xy-x}+\sqrt{y}.\sqrt{2xy-y}\)
\(\le\frac{x+2xy-x}{2}+\frac{y+2xy-y}{2}=2xy\)
Dấu = xảy ra khi ...
Bạn tham khảo bài này, có dạng tương tự.
http://olm.vn/hoi-dap/question/776690.html
Ta có
\(x^4+x^3+x^2+x+1=y^2\)
\(\Leftrightarrow4y^2=4x^4+4x^3+4x^2+4x+4\)cũng là số chính phương
Ta thấy rằng
\(4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)
Và
\(4x^4+4x^3+4x^2+4x+4< 4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)
\(\Rightarrow\left(2x^2+x\right)^2< \left(2y\right)^2< \left(2x^2+x+2\right)^2\)
\(\Rightarrow4y^2=\left(2x^2+x+1\right)^2\)
\(\Leftrightarrow4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+5x^2+2x+1\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
\(A=\left(2x+1\right)\left(x^2+1\right)+\dfrac{4}{2x+1}\) (chia đa thức)
Để A nguyên \(\Rightarrow4⋮2x+1\Rightarrow\left(2x+1\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x=\left\{-\dfrac{5}{2};-\dfrac{3}{2};-1;0;\dfrac{1}{2};\dfrac{3}{2}\right\}\)
x thỏa mãn đk đề bài là \(x=\left\{-1;0\right\}\)
Đặt: \(y^2=\) \(x^4+\left(x+1\right)^3-2x^2-2x\)
= \(x^4+x^3+x^2+x+1\) là số chính phương
<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)
Ta có:
\(4y^2=4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)
\(4y^2=4x^4+4x^3+4x^2+4x+4\le4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)
=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
=> \(\orbr{\begin{cases}4y^2=\left(2x^2+x+2\right)^2\\4y^2=\left(2x^2+x+1\right)^2\end{cases}}\)
TH1: \(4y^2=\left(2x^2+x+2\right)^2\)
hay \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+9x^2+4x+4\)
<=> \(x=0\)thỏa mãn
Th2: \(4y^2=\left(2x^2+x+1\right)^2\)
hay \(4x^4+4x^3+4x^2+4x+4=4x^4+5x^2+1+4x^3+2x\)
<=> \(x^2-2x-3=0\)
<=> x = 3 hoặc x = -1. thử lại thỏa mãn
Vậy x = 0 ; x = -1 hoặc x = 3
\(x^4+2x^3+2x^2+x+3\)
\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>x^4+2x^3+x^2\)
\(=\left(x^2+x\right)^2\)
\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)
\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy.......