\(\frac{2x+1-5}{2x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Ta có :

\(\frac{2x+1-5}{2x+1}=1-\frac{5}{2x+1}\)

để biểu thức trên có giá trị nguyên thì \(\frac{5}{2x+1}\in Z\)

\(\Rightarrow5⋮2x+1\)\(\Rightarrow2x+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Lập bảng ta có :

2x+11-15-5
x0-12-3
18 tháng 6 2019

\(a,\frac{-24}{x}+\frac{18}{x}=\frac{-24+18}{x}=\frac{-6}{x}\)

\(\Leftrightarrow x\inƯ(-6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

\(b,\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2(x+1)-7}{x+1}=2-\frac{7}{x+1}\)

\(\Leftrightarrow7⋮x+1\Leftrightarrow x+1\inƯ(7)=\left\{\pm1;\pm7\right\}\)

Xét các trường hợp rồi tìm được x thôi :>

\(c,\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-x-5}{x-1}=\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2(x-1)+9}{x-1}=2+\frac{9}{x-1}\)

\(\Leftrightarrow9⋮x-1\Leftrightarrow x-1\inƯ(9)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2;10;-8\right\}\)

d, TT

20 tháng 6 2019

YRTSCEYHTFGELCWAMTR.HUNYLA.INBYRUVIQYQNTUNHCUYTBSEUITBVYIQNVIALVTVANYUVLNAUTGUYVTUEVUEATWEHVUTSIOERHUYDBUHEYVGYEGYEHTHGERTGVRYT

8 tháng 11 2017

a) Ta có: \(M=\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=\frac{2x+2+3}{x+1}\)

Vì \(2x+2⋮\left(x+1\right)\Rightarrow3⋮\left(x+1\right)\)

Nên \(x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow x=\left\{0;-2;2;-4\right\}\)

b) Tương tự

29 tháng 3 2017

a) m = 2x +5 / x +1 

= 2(x+1) + 3 / x+1

= 2 + 3/ x+ 1

Để M có giá trị nguyên thì 3 phải chia hết cho x + 1

=> x+1 = 3

=> x = 2

Vậy x = 2 thì M có giá trị nguyên

30 tháng 9 2019

2. Câu hỏi của Hoàng Lê Như Ý - Toán lớp 6 - Học toán với OnlineMath

16 tháng 2 2020

2/

Để 6x + 5/2x - 1 đạt giá trị nguyên thì:

     6x + 5 chia hết cho 2x - 1

=> (6x - 3) + 8 chia hết cho 2x - 1

=> [3(2x - 1)] + 8 chia hết cho 2x - 1

Vì 2x - 1 chia hết cho 2x - 1

=> [3(2x - 1)] chia hết cho 2x - 1

=> 8 chia hết cho 2x - 1

Hay 2x - 1 thuộc Ư(8) = {1;-1;2;-2;4;-4;8;-8}

=> 2x thuộc {2;0;3;-1;5;-3;9;-7}

=> x thuộc {1;0;3/2;-1/2;5/2;-3/2;9/2;-7/2}

Mà x thuộc Z

Do đó: x thuộc {1;0}

*tk giúp mình nhá 😉*

11 tháng 3 2018

ĐỂ BIỂU THỨC \(A=\frac{6x-4}{2x+1}\)NHẬN GIÁ TRỊ NGUYÊN

TA CÓ: \(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3.\left(2x+1\right)-7}{2x+1}\)

\(=\frac{3.\left(2x+1\right)}{2x+1}-\frac{7}{2x+1}=3-\frac{7}{2x+1}\)

ĐỂ \(A\inℤ\)

\(\Rightarrow\frac{7}{2x+1}\inℤ\)

\(\Rightarrow7⋮2x+1\)

\(\Rightarrow2x+1\inƯ_{\left(7\right)}=\left(1;-1;7;-7\right)\)

NẾU \(2x+1=1\Rightarrow2x=0\Rightarrow x=0\left(TM\right)\)

\(2x+1=-1\Rightarrow2x=-2\Rightarrow x=-1\left(TM\right)\)

\(2x+1=7\Rightarrow2x=6\Rightarrow x=3\left(TM\right)\)

\(2x+1=-7\Rightarrow2x=-8\Rightarrow x=-4\left(TM\right)\)

VẬY X = ....................

CHÚC BN HỌC TỐT!!!!!!

11 tháng 3 2018

Ta có : 

\(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3\left(2x+1\right)}{2x+1}-\frac{7}{2x+1}=3-\frac{7}{2x+1}\)

Để A là số nguyên hay nói cách khác thì \(7⋮\left(2n+1\right)\)\(\Rightarrow\)\(\left(2n+1\right)\inƯ\left(7\right)\)

Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)

Suy ra : 

\(2x+1\)\(1\)\(-1\)\(7\)\(-7\)
\(x\)\(0\)\(-1\)\(3\)\(-4\)

Vậy \(x\in\left\{-4;-1;0;3\right\}\)

Chúc bạn học tốt ~

21 tháng 2 2017

Điều kiên:2x+1 khác 0 nên x khác -1/2. Ta có: A=\(\frac{6x+3-7}{2x+1}=3+\frac{7}{2x+1}\) rồi suy ra 2x+1= 7, -7, 1, -1. Vậy x=3,-4,0,-1.

28 tháng 8 2017

Ta có : \(\frac{2x-1}{2x+3}=\frac{2x+3-4}{2x+3}=1-\frac{4}{2x+3}\)

Để \(\frac{2x-1}{2x+3}\in Z\) thì \(\frac{4}{2x+3}\in Z\) 

Suy ra 4 chia hết cho 2x + 3 

=> 2x + 3 thuộc Ư(4) = {-4;-2;-1;1;2;4}

=> 2x = {-7;-5;-4;-2;-1;1}

=> x = -1

28 tháng 3 2018

cần lí giải rõ ràng hơn nữa

6 tháng 4 2017

\(A=\frac{x^2+2x+5}{x+1}=\frac{\left(x^2+2x+1\right)+4}{x+1}=\frac{\left(x+1\right)^2+4}{x+1}=x+1+\frac{4}{x+1}\)

Để \(A=x+1+\frac{4}{x+1}\) là số nguyên <=> \(\frac{4}{x+1}\) là số nguyên 

=> x + 1 \(\inƯ\left(4\right)\) = { - 4; - 2; - 1; 1; 2; 4 }

=> x = { - 5; - 3; - 2; 0; 1; 3 }

Vậy x = { - 5; - 3; - 2; 0; 1; 3 }

6 tháng 4 2017

Để biểu thức A đạt giá trị nguyên thì phân số \(\frac{x^2+2x+5}{x+1}\)phải đạt giá trị nguyên.

\(\Rightarrow x^2+2x+5⋮x+1\)

\(\Rightarrow x.\left(x+1\right)+2x+5-x⋮x+1\)

\(\Rightarrow x+5⋮x+1\)

\(\Rightarrow\left(x+1\right)+4⋮x+1\)

\(\Rightarrow4⋮x+1\)

\(\Rightarrow x+1\inƯ\left(4\right)=\left\{-4;-2;-1;+1;+2;+4\right\}\)

\(\Rightarrow x\in\left\{-5;-3;-2;0;+1;+3\right\}\)

vậy \(x\in\left\{-5;-3;-2;0;+1;+3\right\}\)thì A đạt giá trị nguyên