Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có ( x - 3 ) ( x + 2 ) > 0 nên => x - 3 và x + 2 là 2 số nguyên cùng dấu .
Do đó : hoặc : x - 3 > 0 và x + 2 > 0
=> x > 3 và x > -2 => x > 3
Hoặc : x - 3 < 0 và x + 2 < 0
=> x < 3 và x < -2 => x < -2
Vậy với x < -2 hoặc x > 3 sẽ thỏa ( x - 3 ) ( x + 2 ) > 0
b, Ta có : ( 2x - 4 ) ( x + 4 ) < 0 nên suy ra 2x - 1 và x + 4 là 2 số nguyên khác dấu .
Do đó : hoặc 2x - 4 < 0 và x + 4 > 0 => x < 3 và x < -4
Hoặc : 2x - 4 > 0 và x + 4 < 0 => x > 2 và x < -4
Trường hợp này không xảy ra . Vậy với -4 < x < 2 hay x là một trong 5 số -3 , -2 , -1 , 0 , 1 sẽ thỏa ( 2x - 4 ) ( x + 4 ) < 0
nhầm nhé Sorry
Ta có : ( x - 3 ) ( x + 2 ) > 0 nên suy ra x - 3 và x + 2 là 2 số nguyên cùng dấu .
Do đó : hoặc : x - 3 > 0 và x + 2 > 0
=> x > 3 và x > -2 => x >3
Hoặc : x - 3 < 0 và x + 2 < 0
=> x < 3 và x < -2 => x < -2
Vậy với x < -2 hoặc x > 3 sẽ thỏa ( x - 3 ) ( x + 2 ) >0
Ta có ( 2x - 4 ) ( x + 4 ) < 0 nên suy ra 2x - 1 và x + 4 là 2 số nguyên khác dấu
Do đó : hoặc 2x - 4 < 0 và x + 4 > 0 => x< 3 và x > -4
Hoặc : 2x - 4 > 0 và x + 4 < 0 => x > 2 và x < -4
Trường hợp này không xảy ra . Vậy với -4 < x < 2 hay x là 1 trong 5 số : -3 , -2, -1 , 0 , 1 sẽ thỏa ( 2x - 4 ) ( x + 4 ) <0
a: ĐKXĐ: \(x\notin\left\{4\right\}\)
x2-3x=0
=>x(x-3)=0
=>\(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Thay x=0 vào A, ta được:
\(A=\dfrac{0-5}{0-4}=\dfrac{-5}{-4}=\dfrac{5}{4}\)
Thay x=3 vào A, ta được:
\(A=\dfrac{3-5}{3-4}=\dfrac{-2}{-1}=\dfrac{2}{1}=2\)
b: \(B=\dfrac{x+5}{2x}-\dfrac{x-6}{5-x}-\dfrac{2x^2-2x-50}{2x^2-10x}\)
\(=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-10x+25}{2x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{2x\left(x-5\right)}=\dfrac{x-5}{2x}\)
c: Đặt P=A:B
ĐKXĐ: \(x\notin\left\{4;5;0\right\}\)
P=A:B
\(=\dfrac{x-5}{x-4}:\dfrac{x-5}{2x}\)
\(=\dfrac{x-5}{x-4}\cdot\dfrac{2x}{x-5}=\dfrac{2x}{x-4}\)
Để P là số nguyên thì \(2x⋮x-4\)
=>\(2x-8+8⋮x-4\)
=>\(8⋮x-4\)
=>\(x-4\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=>\(x\in\left\{5;3;6;2;8;0;12;-4\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{3;6;2;8;12;-4\right\}\)
Bài 3: Cho biểu thức A = x - 5/x - 4 và B = x + 5/2x - x - 6/5 - x - 2x² - 2x - 50 / 2 x^2 - 10x t
Ta có x² - 3x = 0 suy ra x x (x - 3) = 0
x = 0; x = 3
Với x = 0 suy ra A = 5/4 v
Với x = 3 suy ra A = 2
Để p đạt giá trị nguyên khi 8/x - 4 cũng phải có giá trị nguyên 28 : (x - 4)
Vậy x - 4 thuộc ước chung của 8 = -8, -4, -1, 1, 4, 8
x - 4 = 8 suy ra x = 4
x - 4 = 4 suy ra 2x = 0 loại
x - 4 = -1 suy ra x = 3 thỏa mãn
x - 4 = 1 suy ra x = 5 loại
x - 4 = 4 - 2x = 8 thỏa mãn
x - 4 = 8 suy ra x = 12 thỏa mãn
Tìm số nguyên n để n - 4 chia hết cho n - 1
Ta có : n - 4 chia hết cho n - 1
=> n - 1 - 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 \(\in\)Ư(3) = {+1;+3}
Với n - 1 = 1 => n = 2
Với n - 1 = -1 => n = 0
Với n - 1 = 3 => n = 4
Với n - 1 = -3 => -2
Vậy n \(\in\) {2;0;4;-2}
a) \(x+546=46\\ x=46-546\\ x=-500\)
b) \(2x-19\times3=27\\ 2x-57=27\\ 2x=27+57\\ 2x=84\\ x=84:2\\ x=42\)
c) \(x+12=23+3\times3^4\\ x+12=23+3\times81\\ x=23+243-12\\ x=254\)
d) \(x-12=3-3\times2^4\\ x-12=3-3\times16\\ x=3-48+12\\ x=-33\)
e) \(\left(27-x\right)\left(x+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}27-x=0\\x+9=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=27\\x=-9\end{matrix}\right.\)
f) \(\left(-x\right)\left(x-43\right)=0\\ \Rightarrow\left[{}\begin{matrix}-x=0\\x-43=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=43\end{matrix}\right.\)
a, \(\left(x-1\right).\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
b, \(\left(2x-4\right).\left(3x+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-4=0\\3x+9=0\end{matrix}\right.\left[{}\begin{matrix}2x=4\\3x=-9\end{matrix}\right.\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
a) TH1: x-1=0 => x=1
TH2: x+2=0 => x=-2
b) TH1: 2x-4=0 <=> 2x= 4 <=> x=2
TH2: 3x+9=0 <=> 3x=-9 <=> x= -3