Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có :
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+2\right)}{\left(x+2\right)\left(x+5\right)}+\frac{\left(x+10\right)-\left(x+5\right)}{\left(x+5\right)\left(x+10\right)}+\frac{\left(x+17\right)-\left(x+10\right)}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{\left(x+17\right)-\left(x+2\right)}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\left(x+17\right)-\left(x+2\right)=x\)
\(\Rightarrow x=15\)
b) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=\frac{4^5.\left(1+1+1+1\right)}{3^5.\left(1+1+1\right)}.\frac{6^5.\left(1+1+1+1+1+1\right)}{2^5.\left(1+1\right)}\)
\(=\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=\frac{4^6}{3^6}.\frac{6^6}{2^6}=\frac{2^{12}.2^6.3^6}{3^6.2^6}=2^{12}\)
Ta có: \(2^{12}=\left(2^3\right)^4=8^4\)
Vậy x= 4
a.4^7
b.8^5
c.cho x mk sẻ tính kết quả nhưng tìm xmk ko tính đâu
\(\left(3-\frac{1}{2}x\right)\left(\left|x+\frac{3}{4}\right|-\frac{5}{6}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3-\frac{1}{2}x=0\\\left|x+\frac{3}{4}\right|-\frac{5}{6}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\left|x+\frac{3}{4}\right|=\frac{5}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6\\x=\frac{1}{12}\\x=\frac{-19}{12}\end{cases}}\)
\(\left(3-\frac{1}{2}x\right)\cdot\left(\left|x+\frac{3}{4}\right|-\frac{5}{6}\right)=0\)
\(\Rightarrow\hept{\begin{cases}3-\frac{1}{2}x=0\\\left|x+\frac{3}{4}\right|-\frac{5}{6}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=6\\x+\frac{3}{4}=\pm\frac{5}{6}\end{cases}}\)
Ta có
\(x+\frac{3}{4}=\pm\frac{5}{6}\)
\(\hept{\begin{cases}x+\frac{3}{4}=\frac{5}{6}\\x+\frac{3}{4}=-\frac{5}{6}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{12}\\x=-\frac{19}{12}\end{cases}}}\)
Vậy \(x\in\left\{3;\frac{1}{2};-\frac{19}{12}\right\}\)
\(\Rightarrow\frac{3}{4}x+5-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}+3\)+3
\(\Rightarrow\left(\frac{3}{4}x-\frac{2}{3}x-\frac{1}{6}x\right)+\left(5+4-1\right)=\frac{1}{3}x+\left(4-\frac{1}{3}+3\right)\)
=>\(\frac{-1}{12}x+8=\frac{1}{3}x+\frac{20}{3}\)\(\Rightarrow\frac{-1}{12}x+8-\frac{1}{3}x=\frac{20}{3}\)
\(\Rightarrow\left(\frac{-1}{12}-\frac{1}{3}\right)x+8=\frac{20}{3}\)
\(\Rightarrow\frac{-5}{12}x+8=\frac{20}{3}\Rightarrow\frac{-5}{12}x=\frac{20}{3}-8\)
\(\Rightarrow\frac{-5}{12}x=\frac{-4}{3}\Rightarrow x=\frac{-4}{3}:\frac{-5}{12}=\frac{16}{5}\)
Ta có \(\frac{2}{3}-\frac{1}{3}.\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5.\)
\(\Rightarrow\frac{2}{3}-\frac{1}{3}.x+\frac{1}{3}.\frac{3}{2}-\frac{1}{2}.2x-\frac{1}{2}=5\)
\(\Rightarrow\frac{2}{3}-\frac{x}{3}+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\Rightarrow\frac{4}{6}-\frac{2x}{6}+\frac{3}{6}-\frac{6x}{6}-\frac{3}{6}=\frac{30}{6}\)
\(\Rightarrow4-2x+3-6x-3=30\)
\(\Rightarrow4-8x=30\)
\(\Rightarrow-8x=26\)
\(\Rightarrow x=\frac{26}{-8}=-\frac{13}{4}\)
Vậy \(x=-\frac{13}{4}\)
Vi \(\left(\frac{1}{7}x-\frac{2}{7}\right)\cdot\left(-\frac{1}{5}x+\frac{3}{5}\right)\cdot\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{7}x-\frac{2}{7}=0\\-\frac{1}{5}x+\frac{3}{5}=0\\\frac{1}{3}x+\frac{4}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{7}x=\frac{2}{7}\\-\frac{1}{5}x=-\frac{3}{5}\\\frac{1}{3}x=-\frac{4}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=3\\x=-4\end{cases}}}\)
Vậy \(x\in\left\{-4;3;2\right\}\)
\(\Rightarrow\frac{1}{7}x-\frac{2}{7}=0\text{ hoặc }-\frac{1}{5}x+\frac{3}{5}=0\text{ hoặc }\frac{1}{3}x+\frac{4}{3}=0\)
\(\Rightarrow x=2\text{ hoặc }x=3\text{ hoặc }x=-4\)
Vậy tập nghiệm của pt là \(S=\left\{2;3;-4\right\}\)
x=2+3=5
\(\frac{2^x}{5^x}>\frac{2^3}{5^3}.\frac{\left(-2\right)^2}{5^2}\)
\(\frac{2^x}{5^x}>\frac{2^5}{5^5}\)
\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^5\)
\(\Rightarrow x>5\)
vậy \(x>5\)