Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 12 - (2\(x^2\) - 3) = 7
2\(x^2\) - 3 = 12 - 7
2\(x^2\) - 3 = 5
2\(x^2\) = 8
\(x^2\) = 4
\(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
a) (x - 2).3⁵ = 3⁷
x - 2 = 3⁷ : 3⁵
x - 2 = 3²
x - 2 = 9
x = 9 + 2
x = 11
b) x² - 2x = 0
x(x - 2) = 0
⇒ x = 0 hoặc x - 2 = 0
*) x - 2 = 0
x = 2
Vậy x = 0; x = 2
c) (2x - 1)² = 49
⇒ 2x - 1 = 7 hoặc 2x - 1 = -7
*) 2x - 1 = 7
2x = 7 + 1
2x = 8
x = 8 : 2
x = 4
*) 2x - 1 = -7
2x = -7 + 1
2x = -6
x = -6 : 2
x = -3
Vậy x = -3; x = 4
Lời giải:
a. $15-(-2x)=22+3x$
$15+2x=22+3x$
$15-22=3x-2x$
$-7=x$
b.
$5(17-3x)+24=4$
$5(17-3x)=4-24=-20$
$17-3x=-20:5=-4$
$3x=17-(-4)=21$
$x=21:3=7$
c.
$42:(x^2+5)=3$
$x^2+5=42:3=14$
$x^2=14-5=9=3^2=(-3)^2$
$\Rightarrow x=3$ hoặc $x=-3$
d.
$73-3x^2=5^6:(-5)^4=(-5)^6:(-5)^4=(-5)^2=25$
$3x^2=73-25=48$
$x^2=48:3=16=4^2=(-4)^2$
$\Rightarrow x=4$ hoặc $x=-4$
a) (x - 2)(x + 3) < 0 (1)
Do x là số nguyên nên x - 2 < x + 3
(1) x - 2 < 0 và x + 3 > 0
*) x - 2 < 0
x < 0 + 2
x < 2
*) x + 3 > 0
x > 0 - 3
x > -3
Vậy -3 < x < 2
Lời giải:
a. $22-(-x)=12$
$22+x=12$
$x=12-22=-10$
b. $x(x+2)=0$
$\Rightarrow x=0$ hoặc $x+2=0$
$\Rightarrow x=0$ hoặc $x=-2$
c. $(x+1)(x+9)=0$
$\Rightarrow x+1=0$ hoặc $x+9=0$
$\Rightarrow x=-1$ hoặc $x=-9$
d.
$x^2+3x=0$
$\Rightarrow x(x+3)=0$
$\Rightarrow x=0$ hoặc $x+3=0$
$\Rightarrow x=0$ hoặc $x=-3$
a) 22 - (-x) = 12
x = 12 - 22
x = -10
b) x.(x + 2) = 0
x = 0 hoặc x + 2 = 0
*) x + 2 = 0
x = 0 - 2
x = -2
Vậy x = -2; x = 0
c) (x + 1)(x + 9) = 0
x + 1 = 0 hoặc x + 9 = 0
*) x + 1 =.0
x = 0 - 1
x = -1
*) x + 9 = 0
x = 0 - 9
x = -9
Vậy x = -9; x = -1
d) x² + 3x = 0
x(x + 3) = 0
x = 0 hoặc x + 3 = 0
*) x + 3 = 0
x = 0 - 3
x = -3
Vậy x = -3; x = 0
a, 2.3\(x+1\) + 38 = 23.52
2.3\(^{x+1}\) + 38 = 200
2.3\(^{x+1}\) = 200 - 38
2.3\(^{x+1}\) = 162
3\(^{x+1}\) = 162 : 2
3\(^{x+1}\) = 81
3\(^{x+1}\) = 34
\(x+1\) = 4
\(x\) = 3
b, 2\(^{x+1}\) + 4.2\(^x\) = 3.25
2\(^x\).(2 + 4) = 96
2\(^x\).6 = 96
2\(^x\) = 96 : 6
2\(^x\) = 16
2\(^x\) = 24
\(x\) = 4
a) 2x-1 là bội của x - 3
=> 2x - 1 ⋮ x - 3
=> 2x - 1 - 2(x - 3) ⋮ x - 3
=> 2x - 1 - 2x - 6 ⋮ x - 3
=> -5 ⋮ x - 3
=> x - 3 ϵ { -5 ; -1 ; 1 ; 5 }
=> x ϵ { -2 ; 2 ; 4 ; 8 }
b) x-1 là bội của 2x+3
=> x-1 ⋮ 2x+3
=> x-1 ⋮ 2x+2+1
=> x-1 ⋮ 2(x+1)+1
=> x-1 ⋮ x + 2
=> x-1 - x+2 ⋮ x+2
=> 3 ⋮ x+2
làm tiếp như trên nha
a) 2x-1 là bội của x - 3
=> 2x - 1 ⋮ x - 3
=> 2x - 1 - 2(x - 3) ⋮ x - 3
=> 2x - 1 - 2x - 6 ⋮ x - 3
=> -5 ⋮ x - 3
=> x - 3 ϵ { -5 ; -1 ; 1 ; 5 }
=> x ϵ { -2 ; 2 ; 4 ; 8 }
b) x-1 là bội của 2x+3
=> x-1 ⋮ 2x+3
=> x-1 ⋮ 2x+2+1
=> x-1 ⋮ 2(x+1)+1
=> x-1 ⋮ x + 2
=> x-1 - x+2 ⋮ x+2
=> 3 ⋮ x+2
a. Với $x,y$ là số nguyên thì $7-2x, y-3$ cũng là số nguyên. Mà $(7-2x)(y-3)=12$ và $7-2x$ là số lẻ nên ta xét các TH sau:
TH1:
$7-2x=1, y-3=12\Rightarrow x=3; y=15$ (tm)
TH2:
$7-2x=-1; y-3=-12\Rightarrow x=4; y=-9$ (tm)
TH3:
$7-2x=3; y-3=4\Rightarrow x=2; y=7$ (tm)
TH4:
$7-2x=-3; y-3=-4\Rightarrow x=5; y=-1$ (tm)
b.
Với $x,y$ là số nguyên thì $2x-3, y+1$ cũng là số nguyên. Mà $(2x-3)(y+1)=12$ và $2x-3$ là số lẻ nên ta có các TH sau:
TH1: $2x-3=1; y+1=12\Rightarrow x=2; y=11$ (tm)
TH2: $2x-3=-1; y+1=-12\Rightarrow x=1; y=-13$ (tm)
TH3: $2x-3=3; y+1=4\Rightarrow x=3; y=3$ (tm)
TH4: $2x-3=-3; y+1=-4\Rightarrow x=0; y=-5$ (tm)
a, 3.(2\(x\) + 4) + 198 = (-3)2.10
3.(2\(x\) + 4) + 198 = 90
3.(2\(x\) + 4) = 90 - 198
3.(2\(x\) + 4) = - 108
2\(x\) + 4 = -108 : 3
2\(x\) + 4 = -36
2\(x\) = - 36 - 4
2\(x\) = - 40
\(x\) = -40 : 2
\(x\) = - 20
b, 2.(\(x\) + 7) - 6 = 18
2.(\(x\) + 7) = 18 + 6
2.(\(x\) + 7) =24
\(x\) + 7 = 24 : 2
\(x\) + 7 = 12
\(x\) = 12 - 7
\(x\) = 5
a) \(\left(x-1\right)\left(x^3+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^3+8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x^3=-8\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
b) \(\left(x+1\right)\left(2x^2-8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\2x^2-8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x^2=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)