K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

Ta có : 3.32.33......3x = 31+2+3+...+x

Mà 3.32.33......3x = 3190 

=> 31+2+3+...+x = 3190

<=> \(3^{\frac{x\left(x+1\right)}{2}}=3^{190}\)

<=> x(x + 1)/2 = 190

<=> x(x + 1) = 380 = 19.20

<=>x(x + 1) = 19.(19 + 1)

=> x = 19

Vậy x = 19

5 tháng 1 2017

19 nha bạn 

10 tháng 1 2018

c.xy2 + 2xy – 243y + x = 0 (1) 
Giải: 
Từ (1) ta có x= 243y/(y+1)^2 
Vì x, y R+ => 243y chia hết cho (y + 1)^2 
Mà (y; y + 1) = 1, nên => 243 chia hết cho (y + 1)^2 
Mà 243 = 3^5 => 243 chia hết cho 3^2 , 9^2 và 1^2 (Vì (y + 1)^2 > 1^2) 
=> (y + 1)^2 = 3^2 => y = 2 => x = 54. 
Hoặc (y + 1)^2 = 9^2 => y = 8 => x = 24. 
Vậy nghiệm nguyên of PT là (54;2); (24;8). 

6 tháng 11 2019

a. Câu hỏi của gorosuke - Toán lớp 8 - Học toán với OnlineMath

26 tháng 9 2015

(x3-4x)2+ 3x2.Iy-3I=0

ta thấy (x3-4x)2  luôn lớn hơn hoặc bằng 0

            3x2.Iy-3I luôn lớn hơn hoặc bằng 0

vậy để (x3-4x)2+ 3x2.Iy-3I = 0 thì cả hai số hạng (x3-4x)2 và 3x2.Iy-3I  phải cùng bằng 0

+)  (x3-4x)=0 

,<=> x3-4x=0  <=>x( x2-4)=0 

<=> x = 0 , x = -2 và x = 2

+) 3x2.Iy-3I = 0 

<=> x = 0 hoặc y-3 = 0  <=> y = 3

vậy các cặp (x; y) thỏa mãn là: (0;3)  ;  (-2;3)  ; (2;3)

 

 

26 tháng 9 2015

Hỏi tổng thống Brack Obama trả lời cho ?

3 tháng 12 2019

Câu hỏi của Nguyen Thao An - Toán lớp 7 - Học toán với OnlineMath

2 tháng 4 2018

[[3x-3]+2x(-1)2016]=3x-2017 mũ 0

<=>3x-3+2x+1=3x-1

<=>-3+2x+1=1

<=>-2+2x=1

<=>2x=2-1

<=>2x=1

<=>x=1/2

2,p=3 bạn nhé

2 tháng 4 2018

1. SAi đề!

2.

\(\text{Ta xét 3 trường hợp:}\)

\(Th1:p=2\text{ ta có:}\)

\(2^2+2^2=8\left(\text{Hợp số}\Rightarrow\text{loại}\right)\)

\(Th2:p=3\text{ ta có:}\)

\(2^3+3^2=17\left(\text{số nguyên tố}\Rightarrow\text{chọn}\right)\)

\(Th3:p>3\text{ ta có:}\)

\(\Rightarrow p\text{ ko chia hết cho 3 và p luôn lẻ}\left(\text{vì 2 là số chẵn duy nhất là số nguyên tố}\right)\)

\(\Rightarrow\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\text{, do đó }p^2-1=\left(p-1\right)\left(p+1\right)⋮3\left(1\right)}\)

\(\text{Vì p luôn lẻ nên }2^p+1\text{ luôn chia hết cho 3}\left(2\right)\)

\(\text{Từ (1) và (2) ta có:}\)

\(2^p+1+p^2-1=2^p+p^2⋮3\left(\text{ loại }\right)\)

\(\text{Vậy p=3 thỏa mãn đề bài}\)

17 tháng 11 2018

\(x^3+3x^2+5=5^y\)

\(x^2.\left(x+3\right)+5=5^y\)

vì \(x+3=5z\)

\(x^2.5z+5=5^y\)

\(x^2.5.\left(z+1\right)=5^y\)

vì x,y,z thuộc Z khác 0

=>...

đến đây tịt r :((

3 tháng 12 2019

Câu hỏi của Nguyen Thao An - Toán lớp 7 - Học toán với OnlineMath

5 tháng 3 2020

Ta có:\(x^3+y^3+z^3=x+y+z+2018\) (1)

\(\implies\) \(\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2018\)

Mà :\(x^3-x=x\left(x^2-1\right)=x\left(x-1\right)\left(x+1\right)\)

       \(y^3-y=y\left(y^2-1\right)=y\left(y-1\right)\left(y+1\right)\)

       \(z^3-z=z\left(z^2-1\right)=z\left(z-1\right)\left(z+1\right)\) 

  Vì x , y , z là các số nguyên:

\(\implies\) \(x\left(x-1\right)\left(x+1\right);y\left(y-1\right)\left(y+1\right);z\left(z-1\right)\left(z+1\right)\) là tích của 3 số nguyên liên tiếp nên chúng chia hết cho 3

 Do đó VT(1) luôn chia hết cho 3 mà 2018 không chia hết cho 3 

Vậy không có các số nguyên x , y , z nào thỏa mãn yêu cầu bài toán 

1 tháng 12 2019

Vì x dương nên \(x^3+3x^2+5>x+3\)

hay \(5^y>5^z\Rightarrow5^y⋮5^z\)

\(\Rightarrow x^3+3x^2+5⋮x+3\)

\(\Rightarrow x^2\left(x+3\right)+5⋮x+3\)

Vì \(x^2\left(x+3\right)⋮x+3\)nên \(5⋮x+3\)

\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Mà x + 3 > 3 ( do x dương ) nên x + 3 = 5 \(\Rightarrow x=2\)

\(\Rightarrow5^z=2+3=5\Leftrightarrow z=1\)

và \(5^y=8+12+5=25\Rightarrow y=2\)

Vậy x = 2; y = 2; z = 1

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

1.

PT $\Leftrightarrow 4x^2+4x+1=y^3+y^2+y+1$
$\Leftrightarrow (2x+1)^2=(y^2+1)(y+1)$
Gọi $d=(y^2+1, y+1)$
$\Rightarrow y^2+1\vdots d; y+1\vdots d$

$\Rightarrow y(y+1)-(y^2+1)\vdots d$ hay $y-1\vdots d$

$\Rightarrow (y+1)-(y-1)\vdots d\Rightarrow 2\vdots d$

$\Rightarrow d=1,2$

Nếu $d=2$ thfi $(2x+1)^2\vdots 2$ (vô lý do $2x+1$ lẻ)

$\Rightarrow d=1$

Tức là $(y^2+1, y+1)=1$. Mà tích của chúng là 1 scp nên mỗi số
 $y^2+1, y+1$ cũng là scp

Đặt $y^2+1=a^2; y+1=b^2$
$\Rightarrow (b^2-1)^2+1=a^2$

$\Leftrightarrow 1=a^2-(b^2-1)^2=(a-b^2+1)(a+b^2-1)$

$\Rightarrow a-b^2+1=a+b^2+1=1$ hoặc $a-b^2+1=a+b^2+1=-1$
Cả 2 TH đều suy ra $y=0$

$\Rightarrow 4x^2+4x=0\Rightarrow x=0$ hoặc $x=-1$

 

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

2.

$x^4+2x^2=y^3$

$\Leftrightarrow (x^2+1)^2=y^3+1=(y+1)(y^2-y+1)$

Đặt $d=(y+1, y^2-y+1)$

$\Rightarrow y+1\vdots d; y^2-y+1\vdots d$

$\Rightarrow (y+1)^2-(y^2-y+1)\vdots d$

$\Rightarrow 3y\vdots d$

Nếu $d\vdots 3$ thì $x^2+1\vdots 3$. Điều này vô lý do 1 scp khi chia 3 dư 0 hoặc 1,

$\Rightarrow x^2+1$ khi chia cho $3$ dư $2$ hoặc $1$ (tức là không chia hết cho 3)

Do đó $d$ và $3$ nguyên tố cùng nhau. Khi đó từ $3y\vdots d$

$\Rightarrow y\vdots d$

Kết hợp với $y+1\vdots d\Rightarrow 1\vdots d\Rightarrow d=1$

$\Rightarrow (y+1, y^2-y+1)=1$. Mà tích của chúng là scp nên mỗi số
 $y+1, y^2-y+1$ cũng là scp

Đặt $y+1=a^2; y^2-y+1=b^2$ với $a,b\in\mathbb{N}$

Có:

$y^2-y+1=b^2$

$\Leftrightarrow (2y-1)^2+3=(2b)^2$

$\Leftrightarrow 3=(2b-2y+1)(2b+2y-1)$
Đây là dạng pt tích đơn giản và ta tìm được $y=0$ hoặc $y=1$

Thay vô pt ban đầu thì có cặp $(x,y)=(0,0)$