Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(x^4=y^2.z^2=x^2.z^2\)
Từ đẳng thức trên :
\(\Rightarrow x^2=y^2\Leftrightarrow x=y\left(1\right)\)
Thay x = y vào đẳng thức x4 = y2 . z2 ta có :
\(\Rightarrow x^4=x^2.z^2\Rightarrow x^4:x^2=z^2\Rightarrow x^2=z^2\Leftrightarrow x=z\left(2\right)\)
Từ (1) và (2)
=>x = y = z
Thay y;z bằng x vào biểu thức P ta có :
\(\Rightarrow P=\frac{\left(x+y\right).\left(y+z\right).\left(z+x\right)}{x.y.z}\)
\(\Rightarrow P=\frac{\left(x+x\right)\left(x+x\right)\left(x+x\right)}{x.x.x}=\frac{2x^3}{x^3}=2\)
Vậy biểu thức P = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt \(\dfrac{x+2y}{3}=\dfrac{y+2z}{4}=\dfrac{z+2x}{5}=t\)
vậy ta đc \(\left\{{}\begin{matrix}x+2y=3t\left(1\right)\\y+2z=4t\left(2\right)\\z+2x=5t\left(3\right)\end{matrix}\right.\)
từ (1) ta có: x = 3t - 2y
thay vào (3) ta được: z + 2 × (3t - 2y) = 5t
=> z + 6t - 4y = 5t => z = -t + 4y (3')
từ (2) ta có: \(z=\dfrac{4t-y}{2}\left(2'\right)\)
từ (2') và (3') ta có:
\(-t+4y=\dfrac{4t-y}{2}\\ -2t+8y=4t-y\\ 9y=6t=>y=\dfrac{2}{3}t\)
thay vào (1): \(x=3t-2\cdot\dfrac{2}{3}t=3t-\dfrac{4}{3}t=\dfrac{5}{3}t\)
thay vào (2'): \(z=\dfrac{4t-\dfrac{2}{3}t}{2}=\dfrac{\dfrac{10}{3}t}{2}=\dfrac{5}{3}t\)
vậy: \(x=\dfrac{5}{3}t;y=\dfrac{2}{3}t;z=\dfrac{5}{3}t\)
thay các giá trị này vào biểu thức trên ta được:
\(xy+yz+2zx=\dfrac{5}{3}t\cdot\dfrac{2}{3}t+\dfrac{2}{3}t\cdot\dfrac{5}{3}t+\dfrac{5}{3}t\cdot\dfrac{5}{3}t\\ xy+yz+2zx=\dfrac{10}{9}t^2+\dfrac{10}{9}t^2+\dfrac{50}{9}t^2\\ =>\dfrac{70}{9}t^2=280=>t=6\\ \left\{{}\begin{matrix}x=\dfrac{5}{3}t=\dfrac{5}{3}\cdot6=10\\y=\dfrac{2}{3}t=\dfrac{2}{3}\cdot6=4\\y=\dfrac{5}{3}t=\dfrac{5}{3}\cdot6=10\end{matrix}\right.\)
vậy các số x; y; z cần tìm lần lượt là 10; 4; 10
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:7(x+y+z) chia hết cho 7 nên \(xyz⋮7\)
Mà 7 là số nguyên tố nên trong ba số x,y,z luôn có một số chia hết cho 7
Không mất tính tổng quát ta giả sử x chia hết cho 7 mà x là số nguyên tố nên x=7
Thay vào ta được:\(7\left(7+y+z\right)=7yz\)
\(\Rightarrow7+y+z=yz\Rightarrow yz-y-z+1=8\Rightarrow\left(y-1\right)\left(z-1\right)=8=1.8=2.4=\left(-1\right).\left(-8\right)\)
\(=\left(-2\right).\left(-4\right)\)
Bạn tự lập bảng xét nha,cuối cùng nếu có x,y,z thỏa mãn thì phải vậy x,y,z là hoán vị nha....
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có x tỉ lệ thuận với y theo tỉ lệ là -2/5 nên là : x=-2/5y (1)
Tương tự y tỉ lệ thuận với z theo tỉ lệ là 1/4 nên là :y=1/4z (2)
ta thay z=5 vào (2) ta có: y=1/4 *5=5/4 hoặc y=5/4 (3)
Ta cho y=5/4 vào (1) ta có : x=-2/5* 5/4 =-1/2
Vậy x=-1/2
tao có x biểu diễn theo y là x=ay mà x=-1/2 và y=5/4 nên a= -2/5
Vậy x biểu diễn theo y là:x= -2/5y
Ta có (x + 1)(y + 2)(z + 3) = 4xyz
<=> \(\frac{\left(x+1\right)\left(y+2\right)\left(z+3\right)}{xyz}=4\)
<=> \(\frac{x+1}{x}.\frac{y+2}{y}.\frac{z+3}{z}=4\)
<=> \(\left(1+\frac{1}{x}\right)\left(1+\frac{2}{y}\right)\left(1+\frac{3}{z}\right)=4\)
=> \(\hept{\begin{cases}1⋮x\\2⋮y\\3⋮z\end{cases}}\); mà x;y;z \(\in P\)=> Không tìm được x;y;z thỏa mãn
thanks