K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

Nếu p = 2 \(\Rightarrow\)P +10 = 2 + 10 = 12 \(\left(12⋮3\right)\)( Loại )
Nếu p = 3 \(\Rightarrow\hept{\begin{cases}p+10=3+10=13\\p+20=3+20=23\end{cases}\Rightarrow}\)là các số nguyên tố ( thỏa mãn )
Nếu p > 3 suy ra p = 3k+1 hoặc 3+2 ( \(k\in\)N* )
+ Với p = 3k+1 \(\Rightarrow p+20=3k+1+20=3k+21\left(⋮3\right)\)( Loại )
+ Với p = 3k+2 \(\Rightarrow p+10=3k+2+10=3k+12\left(⋮3\right)\)( Loại )
Vậy với p = 3 thì p +10 và p+20 cũng là số nguyên tố
                        

15 tháng 11 2017

Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số. 
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số. 
Vậy p = 3. 
2. 
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007. 
Vậy r(x) = 1007x + 1007. 
3. 
Với a,b > 0, dùng bất đẳng thức CauChy thì có 
(a + b)/4 >= can(ab)/2 (1), 
2(a + b) + 1 >= 2can[2(a + b)]. 
Dùng bất đẳng thức Bunhiacopski thì có 
can[2(a + b)] >= can(a) + can(b); 
thành thử 
2(a + b) + 1 >= 2[can(a) + can(b)] (2). 
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có 
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)], 
hay 
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a). 
Dấu bằng đạt được khi a = b = 1/4.

17 tháng 11 2017

Đáp số : 3

28 tháng 10 2016

Ai nhanh minh  cho

15 tháng 10 2021

\(a)\)Vì \(p\)là số nguyên tố

\(\Leftrightarrow\)\(p\in\left\{2;3;5;7;...\right\}\)

\(+)\)\(p=2\Leftrightarrow p+2=2+2=4\)( hợp số ) ( loại )

\(+)\)\(p=3\Leftrightarrow\hept{\begin{cases}p+2=3+2=5\\p+3=3+10=13\end{cases}}\)( thỏa mãn )

\(+)\)\(p>3\)mà \(p\)là số nguyên tố nên \(p\)có 2 dạng:

\(+)\)\(p=3k+1\left(k\in N\right)\Leftrightarrow p+2=3k+3⋮3\)( hợp số )

\(+)\)\(p=3k+2\Leftrightarrow p+10=3k+12⋮3\)( hợp số )

Vậy \(p=3\)\(\left(đpcm\right)\)

31 tháng 10 2017

số đó là 3

3+10=13 là số nguyên tố

3+20=23 là số nguyên tố

hihi

2 tháng 1 2018

nếu p = 2 thì p+10= 2+10=12 là hợp số(loại)

nếu p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố( thỏa mãn)

                   p + 20 = 3 + 20 = 23 là số nguyên tố( thỏa mãn )

nếu p > 3 p có dạng 3k+1 hoặc 3k+2 ( k thuộc số tự nhiên khác 0 )

trường hợp 1: p có dạng 3k +1 thì P + 20 = 3k+1 +20=3k+21= 3(k+7)chia hết cho 3 là hợp số ( loại ) (1 )

th2 : p có dạng 3k +2 thì p+10 = 3k+2 +10= 3k+12= 3(k+4) chia hết cho 3 là hợp số ( loại) (2)

từ(1) và (2)  => p > 3 thì p ko thỏa mãn

vậy P chỉ có thể = 3

14 tháng 12 2016

do p là số nguyên tố =>p>=2 
xét p=2 => p+10 =12 (không là số nguyên tố) 
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố) 
=> p=3 thỏa mãn đề bài 
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1 
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý 
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố 
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài 
p=3 là số nguyên tố duy nhất thỏa mãn đề bài 

14 tháng 12 2016

Số nguyên tố đó là 3 .

Cách giải mình chưa biết . Bạn tự tìm cách giải nha !

2 tháng 11 2016

nguyên tố p+2, p+6,p+8, p+14 là số nguyên tố 

đặt: p= 5k+r (0 ≤ r < 5)

* nếu =>r=1 -> p+14=> 5k+15 chia hết cho 5

* nếu =>r=2 -> p+8=> 5k+10 chia hết cho 5

* nếu => r=3 ->p+2=>5k+5chia hết cho 5

* nếu => r=4->p+6=>5k+10chia hết cho 5

* nếu =>r=0 => p=5klà nguyên tố khi k=1

p=5 các số kia là:7,11,13,19 là các số nguyên tố thỏa mãn

11 tháng 11 2017

p = 3 nha.

14 tháng 8 2017

+,p=2=>p+10=12 là hợp số(KTM)

+,p=3=>p+10=13 (số nguyên tố)=>p+20=23(số nguyên tố)

+, p>3=>p=3k+1 hoặc 3k+2

            +,p=3k+1=>p+20=3k+1+20=3k+21 chia hết cho 3

                           =>p+20 có ít nhất 3 ước là: 1;3;p+20

                           =>p+20 là hợp số(KTM)

           +,p=3k+2=>p+10=3k+2+10=3k+12 chia hết cho 3

                          =>p+10 có ít nhất ba ước là: 1;3;p+10

                          =>p+10 là hợp số.

            Vậy p=3 thỏa mãn.

       Chúc bạn thành công trong học tập

20 tháng 8 2021

Cảm ơn chị nhé em cũng đang rất cần