K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2015

*p = 2 thì p\(^2\)+2 = 6(loại vì 6 không phải là số nghuyên tố)
* p = 3 thì p\(^2\)+2 = 11(chọn vì 11 là số nghuyên tố)
\(\Rightarrow\) p\(^3\) + 2 = 3\(^3\)+2 = 29 (là số nghuyên tố)
* p >3
Vì p là số nguyên tố \(\Rightarrow\)p ko chia hết cho 3 (1)
p thuộc Z \(\Rightarrow p^2\)là số chính phương (2)
từ (1),(2) \(\Rightarrow p^2\) chia 3 dư 1
\(\Rightarrow p^2\)+2 chia hết cho 3 (3)
Mặt khác p>3
\(\Rightarrow p^2>9\)
\(\Rightarrow p^2\)+2 > 11 (4)
Từ (3),(4) \(\Rightarrow p^2\)+2 ko là số nguyên tố (trái với đề bài)

14 tháng 9 2023

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

23 tháng 11 2020

mai giải hết nhé

24 tháng 11 2020

p=2 không thỏa

p=3 thỏa

nếu p>3 thì p chia 3 dư 1 hoặc 2

p chia 3 dư 1 => p+14 chia hết cho 3; lớn hơn 3 => vô lí

p chia 3 dư 2 => p+40 chia hết cho 3; lớn hơn 3 => vô lí

vậy p=3

28 tháng 7 2015

Xét p = 2 ; p = 3 và p > 3 (có dạng 3k + 1 và 3k + 2)

28 tháng 7 2015

thang dtv ko pit lam dau

2 tháng 4 2020

a) VD: \(a=4;b=5\) có \(a^2+b^2=4^2+5^2=16+25=41\) là số nguyên tố 

Mà \(a+b=4+5=9\) là hợp số 

\(\Rightarrow\)Mệnh đề " Nếu \(a^2+b^2\) là số nguyên tố thì \(a+b\)cũng là số nguyên tố " sai 

b) Ta có : \(a^2-b^2=\left(a^2-ab\right)+\left(ab-b^2\right)\) 

\(\Rightarrow a^2-b^2=a\left(a-b\right)+b\left(a-b\right)\)

\(\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)\)

+) Nếu \(a-b>1\)

\(\Rightarrow a^2-b^2⋮\left(a+b\right)\) và \(a^2-b^2⋮\left(a-b\right)\)

\(\Rightarrow a^2-b^2\) là hợp số 

\(\Rightarrow\)Mâu thuẫn 

\(\Rightarrow a-b=1\)

\(\Rightarrow a^2-b^2=a+b\)

Mà \(a^2-b^2\) là số nguyên tố 

\(\Rightarrow a+b\) là số nguyên tố 

\(\Rightarrow\) Mệnh đề :  " Nếu \(a>b\)\(a^2-b^2\)là số nguyên tố thì \(a+b\) cũng là số nguyên tố " đúng   

10 tháng 3 2016

-Nếu p = 2 => p^2 +1 = 2^2+1=5 ( là số ntố )

                      p^4+1=2^4+1=17 (                 )

                 => p=2( t/m)

-Nếu p>2

mà p là số ntố

=>p = 2k+1

=>p^2+1=(2k+1)^2+1=(2k+1)(2k+1)+1

                               =2k(2k+1) + (2k+1) +1

                               = 4k^2 + 2k+2k+1+1

                               =4k^2 + 4k+2

                               =2(2k^2 + 2k+1)

mà 2(2k^2 +2k+1) c ia  ết c o 2

=>p=2k+1 (loại)

26 tháng 2 2021

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

26 tháng 2 2021

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

14 tháng 4 2023

Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)

* Nếu p=3 => p+2=3+2=5 là số nguyên tố 

                 => p+4=3+4=7 là số nguyên tố

=> p=3 thỏa mãn đề bài

* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)

* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)

Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)

* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)

Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)

Vậy p=3 thỏa mãn đề bài