K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2015

 p=3 đó. 

Giả sử p khác 3.Suy ra p không chia hết cho 3 do p là số nguyên tố. 
Suy ra p chia 3 dư 1 hoặc 2. 
1) p chia 3 dư 1=> p=3k+1=>p^2+44=(3k+1)^2+44=9k^2+6k+45=3(... chia hết cho 3,do đó ko là số nguyên tố 
2)p chia 3 dư 2, cũng y vậy p^2+44 chia hết cho 3,do đó cũng ko là số nguyên tố 

Vậy chỉ có p=3 thỏa thôi

 

22 tháng 8 2014

Chú ý, mọi số nguyên tố lớn hơn 2 đều là số lẻ. Số nguyên tố chẵn duy nhất là số 2.

Nếu p>2 và p là nguyên tố => p phải là số lẻ (vì nếu chẵn thì chia hết cho 2 và chính nó => không là số nguyên tố) => p.p và p.p.p.p là số lẻ => p.p + 1 và p.p.p.p + 1 là số chẵn => các số chẵn này không là số nguyên tố.

Vậy chỉ còn trường hợp p = 2 => p.p + 1 = 5 là số nguyên tố, p.p.p.p + 1 = 17 là số nguyên tố.

30 tháng 11 2016

Giả sử p khác 3.Suy ra p không chia hết cho 3 do p là số nguyên tố. 
Suy ra p chia 3 dư 1 hoặc 2. 
1) p chia 3 dư 1=> p=3k+1=>p^2+44=(3k+1)^2+44=9k^2+6k+45=3(... chia hết cho 3,do đó ko là số nguyên tố 
2)p chia 3 dư 2, cũng y vậy p^2+44 chia hết cho 3,do đó cũng ko là số nguyên tố 
Vậy chỉ có p=3 thỏa thôi

11 tháng 1 2018

p=2 thì p^4+2 là hợp số
p=3 =>p^4+2=83 là số nguyên tố
với p>3 thì p có dang 3k+1 và 3k+2 thay vào chúng đều là hợp số
vậy p=3

chcú bn hok totí @_@

12 tháng 2 2016

 p=3 đó. 

Giả sử p khác 3.Suy ra p không chia hết cho 3 do p là số nguyên tố. 
Suy ra p chia 3 dư 1 hoặc 2. 
1) p chia 3 dư 1=> p=3k+1=>p^2+44=(3k+1)^2+44=9k^2+6k+45=3(... chia hết cho 3,do đó ko là số nguyên tố 
2)p chia 3 dư 2, cũng y vậy p^2+44 chia hết cho 3,do đó cũng ko là số nguyên tố 

Vậy chỉ có p=3 thỏa thôi

12 tháng 2 2016

+)xét p=2 =>p2+44=4+44=48 là hợp số

+)xét p=3 thì p2+44=9+44=53 là số nguyên tố

+)xét p>3 và p nguyên tố =>p ko chia hết cho 3

=>p2 chia 3 dư 1

=>p2+44 chia hết cho 3;p2+44>3

=>p2+44 là hợp số

vậy p=3 thỏa mãn

 

3 tháng 2 2016

vì 53 là số nguyên tố => p^2+44=53=>p^2=53-44=9=>p^2=3^2=>p=3

9 tháng 8 2019

Ghi lại đề bài: Cho a+b=p với p là một số nguyên tố, a,b khác 0. Chứng minh a và b là hai số nguyên tố cùng nhau.

Bài làm:

Gọi ước chung lớn nhất của a và b là d, nghĩa là (a,b)=d

Khi đó tồn tại hai só nguyên m, n sao cho: \(a=d.m,b=d.n\)

Ta có: a+b=p

=> \(d.m+d.n=p\)

=> \(d\left(m+n\right)=p\)

=> p chia hết cho d  mà p là số nguyên tố

=> d =1 

=> (a,b)=1 => a,b là hai số nguyên tố cùng nhau.