Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
a)Để P+2;P+6; P+8 là số nguyên tố thì \(P=5\)
hc tốt
- Xét p=2 => p+4 =6 ( không là số nguyên tố )=> loại
- xét p=3 => p+4 =7 (t,m) và p+8 =11 ( t.m)
Nếu p>3 , p nguyên tố => p có dạng 3k+1 hoặc 3k+2 (k nguyen dương)
- p=3k+1 => p+8 = 3k+1+8 =3k+9 chia hết cho 3 => loại
- p=3k+2 => p+4 = 3k+2+4 = 3k+6 chia hết cho 3 => loại
=> với mọi p>3 đều không thỏa mãn
Vậy p=3 là giá trị thỏa mãn cần tìm
Nguyễn Trúc Linh
Trả lời
0
Đánh dấu
4 phút trước (08:28)
Tìm số nguyên tố p sao cho p+2 p+6 p=8 p+12 p+14 đều là số nguyên tố
giải đầy đủ giùm mình nha rồi mình k cho
Toán lớp 6
ok giải như thế này nha !
Vì tổng 2 số là 1 số lẻ nên phải có 1 số chẵn và 1 số lẻ mà trong tập hợp các số nguen tớ chỉ có số 2 là số chẵn duy nhất=> số chẵn đó là 2
số lẻ đó là: 3011 - 2 = 3009
vi 3009 chia hết cho 3 va 3009>3 =>3009 là hợp số.
Vậy không có 2 số nguen tố có tổng bằng 3011
Nhưng mà nãy h có thấy bn í giải đâu nà, z mk giải
Do p + 2; p + 6; p + 8; p + 14 đều là các số nguyên tố > 2 => các số này đều là số lẻ
=> p lẻ
+ Với p = 3 thì p + 6 = 3 + 6 = 9, là hợp số, loại
+ Với p = 5 thì p + 2 = 7; p + 6 = 11; p + 8 = 13; p + 14 = 19, đều là các số nguyên tố, chọn
+ Với p > 5, do p nguyên tố => p = 5k + 1; p = 5k + 2; p = 5k + 3 hoặc p = 5k + 4 (k thuộc N*)
Với p = 5k + 1 thì p + 14 = 5k + 15 chia hết cho 5, là hợp số, loại
Tương tự vs các trường hợp còn lại cx tìm đc 1 số ko thỏa mãn
Vậy p = 5
+Nếu p = 2 $\Rightarrow $ p + 2 = 4 (loại)
+Nếu p = 3 $\Rightarrow $ p + 6 = 9 (loại)
+Nếu p = 5 $\Rightarrow $ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên $\Rightarrow $ p không chia hết cho 5 $\Rightarrow $ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) $\vdots $ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) $\vdots $ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) $\vdots $ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) $\vdots $ 5 (loại)
$\Rightarrow $ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm