Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử p là SNt>3
p là SNT>3 thì p2 chia 3 dư 1
p2=3k+1
p2+14=3k+1+14=3k+15=3(k+5) chia hết cho 3 nên ko là SNt, loại
Vậy p=2 hoặc p=3
p=2 ko thỏa mãn
Vậy p=3
Thử lại 32+14=9+14=13, thỏa mãn là SNT
do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài
Vói mọi p ta có p^2 có 1 trong 2 dạng sau:
3k và 3k+1
Với p^2=3k, p là số nguyên tố=> p=3
Với p^2=3k+1=> p^2+14=3k+1+14=3k+15 chia hết cho 3
Mà 3k+15>3=> p^2+14 là hợp số ( vô lý)
Vậy p=3
- Nếu P = 2 => P2 + 14 = 22 + 14 = 18 (ko thỏa mãn vì 18 là hợp số)
- Nếu P = 3 => P2 + 14 = 32 + 14 = 23 (thỏa mãn vì 23 là số nguyên tố)
- Nếu P > 3 => P có 2 dạng :
+ P = 3k + 1 => P2 + 14 = (3k + 1)2 + 14 = (9k2 + 6k + 1) + 14 = 9k2 + 6k + 15 = 3 (3k2 + 2k + 5)
=> P là hợp số (ko thỏa mãn)
+ P = 3k + 2 => P2 + 14 = (3k + 2)2 + 14 =[9k2 + 2 (3k . 2) + 4 ] + 14 = 9k2 + 12k + 18 = 3 (3k2 + 4k + 6)
=> P là hợp số (ko thỏa mãn)
Vậy P = 3 thì P2 + 14 là số nguyên tố