K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

a) Xét:

\(+p=2\Rightarrow3p+5=2.3 +5=11\left(TM\right)\)

+) \(p>2\). Do P là so nguyen to nen p lẻ \(\Rightarrow3p+5\)chan và \(3p+5>2\)\(\Rightarrow3p+5là\)hop so 

Vay p=2

b) Xét:'

\(+p=2\Rightarrow p+8=10\left(ktm\right)\)

\(+p=3\Rightarrow p+8=11;p+10=13\left(TM\right)\)

\(+p>3\).Do p là so nguyen to nen \(p=3k+1;p=3k+2\left(k\inℕ^∗\right)\)

\(-p=3k+1\Rightarrow p+8=3\left(k+3\right)⋮3\left(loại\right)\)

\(-p=3k+2\Rightarrow p+10=3\left(k+4\right)⋮3\left(loại\right)\)

Vay p=3
 

23 tháng 9 2018

a/ Xét p lẻ => 3p + 5 là số chẵn nên chia hết cho 2 mà 3p + 5 > 2 nên loại.

Xét p = 2 => 3.2 + 5 = 11 (nhận)

b/ Ta thấy 8 chia 3 dư 2; 10 chia 3 dư 1. Nên để đồng thời p + 8 và p + 10 là số nguyên tố thì p khi chia cho 3 không thể có số dư là 1 hoặc 2.

=> p = 3 

12 tháng 5 2017

- Xét p=2 => p+4 =6 ( không là số nguyên tố )=> loại

- xét p=3 => p+4 =7 (t,m) và p+8 =11 ( t.m)

Nếu p>3 , p nguyên tố => p  có dạng 3k+1 hoặc 3k+2 (k nguyen dương)

- p=3k+1 => p+8 = 3k+1+8 =3k+9 chia hết cho 3 => loại

- p=3k+2 => p+4 = 3k+2+4 = 3k+6 chia hết cho 3 => loại

=>  với mọi p>3 đều không thỏa mãn 

Vậy  p=3 là giá trị thỏa mãn cần tìm 

12 tháng 5 2017

Số nguyên p là 3

11 tháng 11 2016

+Nếu p = 2 $\Rightarrow $ p + 2 = 4 (loại)

+Nếu p = 3 $\Rightarrow $ p + 6 = 9 (loại)

+Nếu p = 5 $\Rightarrow $ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)

+Nếu p > 5, ta có vì p là số nguyên tố nên $\Rightarrow $ p không chia hết cho 5 $\Rightarrow $ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4

   -Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) $\vdots $ 5 (loại)

   -Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) $\vdots $ 5 (loại)

   -Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) $\vdots $ 5 (loại)

   -Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) $\vdots $ 5 (loại)

$\Rightarrow $ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn

Vậy p = 5 là giá trị cần tìm

18 tháng 10 2016

a. A=(p;p+2;p+4) 

p=2=>A=(2,4,6)loai vay P phai le

Tập hợp 3 số lẻ liên tiếp  phải có số chia hết cho 3

Vậy P =3  

A=(3,5,7) 

b.A=(p,p+10,p+14); p=2

P=1=> A=(3,13,17) nhan

P>3  (p nguyen to do vay p co dang  p=3n+1 &3n+2)

*TH1; P co dang p=3n+1

P+10=3n+11

P+14=3n+15 chia het cho 3=> loai P=3n+1

*TH2; P co dang p=3n+2

P+10=3n+12 chia het cho 3 => loai p=3n+2

vay P=3 duy nhat

c. A=(p,p+2,p+6,p+8)

p=2 loai

p=3=> A=(3.5,9,11) loai

p=5=>A=(5,7,11,13) nhan

P=11A=(11,13,17,19) nhan

xet P>11

tuong tu (b) xe ra hoi dai 

de xem co cach ngan hon ko

1 tháng 11 2015

1.

a) p = 1

b) p = 1 

c) p = 1 

3.

là hợp số . Vì 2*3*5*7*11+13*17*19*21 = 90489

1 tháng 11 2015

đăng từng bài 1 thôi nhiều quá ngất xỉu luôn.

19 tháng 10 2016

a,p=2.

b,p=0,2,4.

c,ban tự lm

k mik nhe

7 tháng 7 2019

TL:

a)Để  P+2;P+6; P+8 là số nguyên tố thì \(P=5\) 

hc tốt

7 tháng 7 2019

trình bày ra cho mình nha

15 tháng 12 2017

đem p chia cho 3 xảy ra 3 khả năng về số dư : dư 0 hoặc dư 1 hoặc dư 2

+) nếu p chia cho 3 dư 0 \(\Rightarrow p⋮3\)  mà p là số nguyên tố  \(\Rightarrow p=3\)  

khi đó  \(p+10=3+10=13\)  ( thỏa mãn )

            \(p+14=3+14=17\)  ( thỏa mãn )

+ ) nếu p chia cho 3 dư 1  \(\Rightarrow p=3k+1\)   ( k \(\in\) N* )

khi đó \(p+15=3k+1+14=3k+15=3\left(k+3\right)⋮3\)

mà \(p+14>3\Rightarrow p+14\)  là hợp số ( loại )

+) nếu p chia cho 3 dư 2  \(\Rightarrow p=3k+2\)   ( k  \(\in\)  N* )

khi đó \(p+10=3k+2+10=3k+12=3\left(k+4\right)⋮3\)

mà  \(p+10>3\Rightarrow p+10\)  là hợp số ( loại )

vậy p = 3

chúc bạn học giỏi ^^