K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4

xét p=7 dễ thấy đó là số cần tìm

giả sử p2p2 chia 7 dư 1 =>  3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí

tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí

=> p chia hết cho 7 nên p=7

b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42

từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3

xét z <3, ta có:

z=2=>z2−6=−2z2−6=−2 không chia hết cho 3

z=1=> z2−6=−5z2−6=−5 không chia hết cho 3

suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0

suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:

(x;y;z)=(0;1;3);(6;1;3);(3;2;3)

Duyệt nha 

9 tháng 2 2016

Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4

xét p=7 dễ thấy đó là số cần tìm

giả sử p2p2 chia 7 dư 1 =>  3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí

tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí

=> p chia hết cho 7 nên p=7

b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42

từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3

xét z <3, ta có:

z=2=>z2−6=−2z2−6=−2 không chia hết cho 3

z=1=> z2−6=−5z2−6=−5 không chia hết cho 3

suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0

suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:

(x;y;z)=(0;1;3);(6;1;3);(3;2;3)

Duyệt nha 

NV
12 tháng 1 2022

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

NV
12 tháng 1 2022

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

1 tháng 3 2020

Gửi bạn nhé, bài này mình đã làm rồi , chúc bạn học tốt !

p2p2 là số chính phương nên p2p2 chia 7 dư 0,1,2 hoặc 4
- Nếu p2⋮7p2⋮7 thì p⋮7⇒p=7p⋮7⇒p=7 , thay vào thỏa mãn

-Nếu p2p2 chia 7 dư 1 thì 3p2+43p2+4 ⋮7⇒⋮7⇒ trái với đề bài

- Nếu p2p2 chia 7 dư 2 3p2+1⋮7⇒3p2+1⋮7⇒ vô lí

-Nếu p2p2 chia 7 dư 4 2p2−1⋮7⇒2p2−1⋮7⇒ vô lí

Vậy p=7

21 tháng 2 2016

\(p=3\Rightarrow2p^2+1=19\)

Nhẩm nhẩm một chút là ra đó bạn

Cái này lớp 6 chứ

16 tháng 11 2017

Đề kiểu gì vậy. 

Ta có: \(2p^2⋮p^2\)thì là hợp số luông chứ chứng minh cái gì nữa

16 tháng 11 2017
Đề sai bạn ơi!!!