K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2016

Vì a và b là số tự nhiên => a + 2b là số tự nhiên (1)

Ta có : 3a + 6b = 2017

=>3(a + 2b)=2017

a + 2b = 672,33...3(2)

Từ (1) và (2) =>Không tìm được a và b

2 tháng 4 2018

[[3x-3]+2x(-1)2016]=3x-2017 mũ 0

<=>3x-3+2x+1=3x-1

<=>-3+2x+1=1

<=>-2+2x=1

<=>2x=2-1

<=>2x=1

<=>x=1/2

2,p=3 bạn nhé

2 tháng 4 2018

1. SAi đề!

2.

\(\text{Ta xét 3 trường hợp:}\)

\(Th1:p=2\text{ ta có:}\)

\(2^2+2^2=8\left(\text{Hợp số}\Rightarrow\text{loại}\right)\)

\(Th2:p=3\text{ ta có:}\)

\(2^3+3^2=17\left(\text{số nguyên tố}\Rightarrow\text{chọn}\right)\)

\(Th3:p>3\text{ ta có:}\)

\(\Rightarrow p\text{ ko chia hết cho 3 và p luôn lẻ}\left(\text{vì 2 là số chẵn duy nhất là số nguyên tố}\right)\)

\(\Rightarrow\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\text{, do đó }p^2-1=\left(p-1\right)\left(p+1\right)⋮3\left(1\right)}\)

\(\text{Vì p luôn lẻ nên }2^p+1\text{ luôn chia hết cho 3}\left(2\right)\)

\(\text{Từ (1) và (2) ta có:}\)

\(2^p+1+p^2-1=2^p+p^2⋮3\left(\text{ loại }\right)\)

\(\text{Vậy p=3 thỏa mãn đề bài}\)

7 tháng 4 2017

Thay \(a+b+c\) vào \(A\) ta được:

\(A=\frac{a}{2017-c}+\frac{b}{2017-a}+\frac{c}{2017-b}\)

\(=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)

\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)

Ta có:

\(\frac{a}{a+b}< \frac{a+b}{a+b+c}\)

\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)

\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng vế với vế ta được:

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow A< 2\left(1\right)\)

Lại có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng vế với vế ta lại được:

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow A>1\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow1< A< 2\)

Vậy \(A\) không phải là số nguyên (Đpcm)

7 tháng 4 2017

cái này chứng minh 1 < A < 2. mình chỉ bít chứng minh 1 < A thui 

Ta có \(\frac{a}{2017-c}>\frac{a}{2017};\frac{b}{2017-a}>\frac{b}{2017};\frac{c}{2017-b}>\frac{c}{2017}\) 

suy ra \(A>\frac{a}{2017}+\frac{b}{2017}+\frac{c}{2017}=\frac{2017}{2017}=1\)

=> A > 1

15 tháng 1 2018

\(\frac{1}{8}.16^n=2^n\)

\(\frac{16^n}{8}=2^n\)

\(\frac{\left(2^4\right)^n}{2^3}=2^n\)

\(\frac{2^{4n}}{2^3}=2^n\)

=> 23=24n:2n

23=23n

=> 3n=3

=> n=1