K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

vì p là một số nguyên tố mà p+10 và p+20 đều là số nguyên tố 

=> p khác 2 nên p có dạng là 3k , 3k+1 và 3k+2

với p=3k+1 thì p+20 = 3k +21 chia hết cho 3 mà p +20>3 nên p+20 là hợp số (loại )

với p=3k+2 thì p+10=3k+12 chia hết cho 2 mà p+12>3 nên p+10 là hợp số (loại)

nên p chỉ có thể có dạng là 3k 

mà p là số nguyên tố nên p=3 

13 tháng 11 2016

p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13 ; p + 20 = 23 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p  có thể có dạng:

+) p = 3k + 1 => p + 20 = 3k + 21 chia hết cho 3 => loại p = 3k + 1

+) p = 3k + 2 => p + 10 = 3k + 12 chia hết cho 3 => loại p = 3k+2

Vậy p = 3

25 tháng 10 2015

nếu k+1 > 1 thì 3 . (k+1) sẽ có nhiều hơn 2 ước => là hợp số

nên k+1=1

=>k=0 

tick nhá

25 tháng 10 2015

Để 3(k+1) là số nguyên tố thì 3(k+1) có ước là 1 và 3(k+1)

=> 3(k+1)=3 

=> k+1=1

=>k=0

18 tháng 4 2020

p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.

p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )

Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!

28 tháng 10 2016

Ai nhanh minh  cho

15 tháng 10 2021

\(a)\)Vì \(p\)là số nguyên tố

\(\Leftrightarrow\)\(p\in\left\{2;3;5;7;...\right\}\)

\(+)\)\(p=2\Leftrightarrow p+2=2+2=4\)( hợp số ) ( loại )

\(+)\)\(p=3\Leftrightarrow\hept{\begin{cases}p+2=3+2=5\\p+3=3+10=13\end{cases}}\)( thỏa mãn )

\(+)\)\(p>3\)mà \(p\)là số nguyên tố nên \(p\)có 2 dạng:

\(+)\)\(p=3k+1\left(k\in N\right)\Leftrightarrow p+2=3k+3⋮3\)( hợp số )

\(+)\)\(p=3k+2\Leftrightarrow p+10=3k+12⋮3\)( hợp số )

Vậy \(p=3\)\(\left(đpcm\right)\)

14 tháng 10 2016

a) k = 1 

b) k = 1

20 tháng 10 2016

+để 3k là số nguyên tố thì k = 1

+để 7k là số nguyên tố thì k=1

15 tháng 11 2017

Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số. 
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số. 
Vậy p = 3. 
2. 
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007. 
Vậy r(x) = 1007x + 1007. 
3. 
Với a,b > 0, dùng bất đẳng thức CauChy thì có 
(a + b)/4 >= can(ab)/2 (1), 
2(a + b) + 1 >= 2can[2(a + b)]. 
Dùng bất đẳng thức Bunhiacopski thì có 
can[2(a + b)] >= can(a) + can(b); 
thành thử 
2(a + b) + 1 >= 2[can(a) + can(b)] (2). 
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có 
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)], 
hay 
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a). 
Dấu bằng đạt được khi a = b = 1/4.

17 tháng 11 2017

Đáp số : 3

5 tháng 11 2019

a) gs cả 2 số đều lẻ thì tổng chẵn 

mà 2 số nguyên tố lẻ nên >2 => tổng >2 mà tổng chẵn => ko là sô nguyên tố => trái đề bài

suy ra 1 trong 2 số là số chẵn mà 2 số là số nguyên tố => một số =2

mà 2 số này là 2 số nguyên tố liên tiếp nên số còn lại là 3

b) đặt 19n=p ( p nguyên tố);

vì p nguyên tố nên phân tích p thành tích 2 số tự nhiên ta có p=p*1

=> p=19;n=1

c)đặt (p+1)(p+7)=a ( a nguyên tố)

vì a nguyên tố nên phân tích a thành tích 2 số tự nhiên ta có a=a*1; mà p+1<p+7

nên p+1=1 và p+7=a => p=0;a=7

5 tháng 11 2019

Cảm ơn bn nha