\(2p^2+1\) là sô nguyên tố

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét :

  • \(p=2\)

\(\Rightarrow2p^2+1=9\)(là hợp số)

\(\Rightarrow\)Loại

  • \(p=3\)

\(\Rightarrow2p^2+1=19\)(là số nguyên tố)

\(\Rightarrow\)Chọn

  • \(p>3\)

\(\Rightarrow\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)

Với \(p=3k+1\left(k\inℕ^∗\right)\)

\(\Rightarrow2p^2+1=3\left(6k^2+4k+1\right)⋮3\)(là hợp số ,do \(p>3\))

Với \(p=3k+2\left(k\inℕ^∗\right)\)

\(\Rightarrow2p^2+1=3\left(6k^2+8k+3\right)⋮3\)(là hợp số ,do \(p>3\))

\(\Rightarrow\)Với \(p>3\)thì \(2p^2+1\)luôn là hợp số

Vậy \(p=3\)

+) p = 2 

=> 3p2+4= 15 không phải số nguyên tố => loại 

+) p = 3 

=> 2p2+3= 21 không phải SNT => loại 

+) p = 5 

=> 2p2-1= 49 không phải SNT => loại 

+) p = 7 

=> 2p2-1 = 97 

     2p2+3 = 101 

     3p2+4 = 151 

=> thỏa mãn 

+) p>7 

Xét có dạng p = 7k+1, 7k+2, 7k+3, 7k-1, 7k-2, 7k-3 thì không thỏa mãn 

Vậy p = 7 để ... 

Chịu khó đọc, chẳng biết sao ko dùng đc phần kí tự 

24 tháng 1 2018

thầy mới dạy mk xong. có trong đề Hải Dương năm 2014-2015

DD
4 tháng 2 2021

\(A=n^3+n^2-n+2=\left(n+2\right)\left(n^2-n+1\right)\)là số nguyên tố suy ra 

\(\orbr{\begin{cases}n+2=1\\n^2-n+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=-1\\n=1;n=0\end{cases}}\)

Thử lại đều thỏa mãn. 

30 tháng 4 2020

Xét \(p=2\)

\(\Rightarrow x^3=4+1=5\)

\(\Leftrightarrow x=\sqrt[3]{5}\left(ktm\right)\)

Xét \(p>2\Rightarrow p\)lẻ 

Ta thấy \(2p+1\)lẻ với mọi \(p\)

\(\Rightarrow x^3\)lẻ \(\Leftrightarrow x\)lẻ

Đặt \(x=2a+1\)

\(\Rightarrow\left(2a+1\right)^3=2p+1\)

\(\Leftrightarrow8a^3+12a+6a+1=2p+1\)

\(\Leftrightarrow2a\left(4a^2+6a+3\right)=2p\)

\(\Leftrightarrow a\left(4a^2+6a+3\right)=p\)

Mà \(p\)là số nguyên tố 

\(\Rightarrow a\left(4a^2+6a+3\right)=p\Leftrightarrow\orbr{\begin{cases}a=1\\a=p\end{cases}}\)

\(\left(+\right)a=1\Rightarrow1\left(4.1^2+6.1+3\right)=p\)

\(\Leftrightarrow p=13\left(tm\right)\Rightarrow x^3=2.13+1\)

\(\Leftrightarrow x^3=27\Leftrightarrow x=3\left(tm\right)\)

\(\left(+\right)a=p\Rightarrow p\left(4p^2+6p+3\right)=p\)

\(\Leftrightarrow4p^2+6p+3=1\left(p>2\right)\)

\(\Leftrightarrow4p^2+4p+2p+2=0\)

\(\Leftrightarrow\left(4p+2\right)\left(p+1\right)=0\Leftrightarrow\orbr{\begin{cases}4p+2=0\\p+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}p=-\frac{2}{4}\left(ktm\right)\\p=-1\left(ktm\right)\end{cases}}\)

Vậy với p là số nguyên tố thì x = 3

30 tháng 4 2020

Vì p là snt nên 2p+1 là số lẻ. Do đó x3 là một số lẻ và x là số lẻ

Ta đặt x=2k+1 (k thuộc N)

Khi đó 2p+1=2(2k+1)3=8k3+12k2+6k+1

Vậy đặt 2p=8k3+12k2+6k

<=> p=4k3+6k2+3k=k(4k2+6k+3)

Vì p là số nguyên tối nên k=1 do đó x=3

3 tháng 7 2017

- Nếu n chẵn thì  \(\left(n^2+1\right)3n\)  chẵn, mà  \(6\left(n^2+1\right)\)  chẵn nên A chẵn

- Nếu n lẻ thì  \(\left(n^2+1\right)3n\)  chẵn, mà  \(6\left(n^2+1\right)\)  chẵn nên A chẵn

Do đó  \(\forall n\in N\)    thì A chẵn, mà A là số nguyên tố  => A = 2

Hay \(\left(n^2+1\right)3n-6\left(n^2+1\right)=2\)

\(\Leftrightarrow3n^3+3n-6n^2-6-2=0\)

\(\Leftrightarrow3n^3-6n^2+3n-8=0\)

Mà  \(n\in N\)  nên ko tìm đc giá trị của n để A là số nguyên tố.

2 tháng 7 2017

Đề bài hay nhỉ :3
A là SNT
-> A= 3((n^2+1)n-3(n^2+1)) -> A=3 
-> n^3+n-2n^2-2=1
-> Không n thỏa mãn 
-> Kết luận có A nguyên tố nhưng n không nguyên nên tha cho em bài này :vv

31 tháng 10 2015

A=(n2-n) - (3n-3)= (n-1)(n-3) là số nguyên tố thì

n-1=1;-1 và n-3 là số nguyên tố => n= 2;0  khi đó n-3=-1;3 là số nguyên tố => n=0 là thỏa mãn

hoặc n-3=1;-1 và n-1 là số nguyên tố => n=4;2 khi đó n-1=3;1 là số nguyên tố => n=4 là thỏa mãn

Vậy n= 0 hoặc n=4