K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2022

hello

NV
18 tháng 1 2022

Với \(p=3\) \(\Rightarrow2p^4-p^2+16=169=13^2\) thỏa mãn

Với \(p\ne3\Rightarrow p⋮̸3\Rightarrow p^2\) luôn chia 3 dư 1

\(\Rightarrow p^2=3k+1\)

\(\Rightarrow2p^4-p^2+16=2\left(3k+1\right)^2-\left(3k+1\right)+16=3\left(6k^2+3k+5\right)+2\) chia 3 dư 2

\(\Rightarrow2p^4-p^2+16\) ko thể là SCP với \(p\ne3\)

\(\Rightarrow p=3\) là giá trị duy nhất thỏa mãn 

27 tháng 5 2015

Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2     (n \(\in\) N)
Suy ra : 4n= 4p+ 4p+ 4p+ 4p + 4 > 4p+ 4p+ p= (2p+ p)2
Và  4n2 < 4p+ p2 + 4 + 4p+ 8p+ 4p = (2p+ p + 2)2.
Vậy : (2p+ p)< (2n) < (2p+ p + 2)2.
Suy ra :(2n)2 = (2p+ p + 2)2 = 4p+ 4p+5p+ 2p + 1

vậy 4p + 4p+5p+ 2p + 1 = 4p+ 4p+4p+4p + 4   (vì cùng bằng 4n2 )

=> p- 2p - 3 = 0  => (p + 1) (p - 3) = 0

do p > 1  => p - 3 = 0   => p = 3

27 tháng 5 2015

\(\sqrt{3^4}=9\) nên p = 3

25 tháng 9 2015

a) Xet p=2

=> p+6=8;p+8=10 ( vô lý )

xet p = 3

=> p+6=9 là hợp số loại

xet p=5

=> p+6=11 ; p+8=13 ; p+12=17 ; p+14=19 ( thỏa mãn )

xet p> 5

=> p=5k+1;5k+2;5k+3;5k+4

=> p+6 ; p+8 ; p+12 ;p+14 lần lượt là hợp số

=> p=5

b) xet p=2=> 2p+1=5

=> 4p+1=9 là hợp số

xet p=3

=> 2p+1=7

=> 4p+1=13 là số nguyên tố ( vô lý)

 

13 tháng 8 2017
đệt sao ko ai giải
27 tháng 5 2022

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

Đặt 2n+1=k\(^{^{}2}\) , 3n+1=p\(^{^{}2}\)

Từ cách đặt trên chuyển về pt: x\(^{^{}2}\) - 6y\(^{^{}2}\) = 3 (1) với x=3k, y=p
Xét pt Pell (I): x\(^{^{}2}\) - 6y\(^{^{}2}\) = 1. Nghiệm nhỏ nhất: (a,b) = (5,2)
Gọi (x',y') là nghiệm nhỏ nhất của pt (1)
Ta có y'\(^{^{}2}\) \(\le\) max { nb\(^{^{}2}\), \(\frac{-na^2}{d}\) } = max {12, -12,5} = 12 (n=3, d=6)

-> y' \(\le\) 3 (do y' nguyên dương) -> y' \(\in\) {1,2,3}
Thử trực tiếp, dễ thấy (x',y') = (3,1) thoả mãn
-> Pt (1) có dãy nghiệm:
\(x_0\) = 3, \(y_0\) = 1, \(x_{m+1}\) = 5\(x_{m}\) + 12\(y_{m}\) , \(y_{m+1}\) = 2\(x_{m}\) + 5\(y_{m}\)

-> \(k_0\) =1, \(p_0\) =1, \(k_{m+1}\) = 5\(k_{m}\) + 4\(p_{m}\) , \(p_{m+1}\) = 6\(k_{m}\) + 5\(p_{m}\)

Biến đổi, ta chuyển dãy về thành dãy (\(t_{m}\) ) được xác định qua công thức truy hồi sau:

\(t_1\) = 40, \(t_{m+1}\) = 49\(t_{m}\) + 20 + 20\(\sqrt{6t_{m^{}}^2+5t_{m}+1}\) (m nguyên dương)

Khi đó (\(t_{m}\)) vét hết tất cả các giá trị của n để 2n+1 và 3n+1 là số chính phương
=> Với mỗi m bất kì, ta tìm được một giá trị n thoả mãn.