Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4n + 7 chia hết cho 2n + 1
⇒ 4n + 2 + 5 chia hết cho 2n + 1
⇒ 2(2n + 1) + 5 chia hết cho 2n + 1
⇒ 5 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(5) (ước dương)
⇒ 2n + 1 ∈ {1; 5}
⇒ n ∈ {0; 2}
a/ Ta có: 2n-7=2n+6-13=2(n+3)-13
Nhận thấy, 2(n+3) chia hết cho n+3 với mọi n
=> Để 2n-7 chia hết cho n+3 => 13 chia hết cho n+3
=> n+3=(-13,-1,1,13)
n+3 | -13 | -1 | 1 | 13 |
n | -16 | -4 | -2 | 10 |
\(a,\left(n+5\right)⋮\left(n+2\right)\)
\(\left(n+2+3\right)⋮\left(n+2\right)\)
\(\Rightarrow3⋮\left(n+2\right)\)
\(\Rightarrow n+2\in\left(1;-1;3;-3\right)\)
\(\Rightarrow n\in\left(-1;-3;1;-5\right)\)
b,c,d Tự làm
* Do p > 3 , mà một số > 3 khi chia cho 3 có hai trường hợp xảy ra : 3k + 1 ; 3k + 2.(k thuộc N)(ko lấy 3k vì 3k là hợp số)
Với p = 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 ko phải là SNT
Với p = 3k + 2
=> p + 8 = 3k + 10 là SNT
=> p + 100 = 3k + 2 + 100 = 3k + 102 là hợp số .
Vậy p + 100 là hợp số
1.a) goi d la uoc chung cua 2n+1 va 2n+3
Suy ra 2n+1 chia het cho d va 2n+3 chia het cho d
Suy ra (2n+3)-(2n+1) chia het cho d
Suy ra 2 chia het cho d
MA d la uoc cua mot so le nen d=1
VAy 2n+1 va 2n+3 la so nguyen to cung nhau.
b) Goi d la uoc chung cua 2n+5 va 3n+7
Suy ra 2n+5 chia het cho d va 3n+7 chia het cho d
Suy ra 3(2n+5)-2(3n+7) chia het cho d
Suy ra 6n+15-6n-14 chia het cho d
Suy ra 1 chia het cho d
Suy ra d=1
Vay 2n+5 va 3n+7 la so nguyen to cung nhau.
Cau 2)
Vi 2n+1 luon luon chia het cho 2n+1
Suy ra 2(2n+1) chia het cho 2n+1
Suy ra 4n+2 chia het cho 2n+1(1)
Gia su 4n+3 chia het cho 2n+1 (2)
Tu (1) va (2) suy ra (4n+3)-(4n+2) chia het cho 2n+1
suy ra 1 chia het cho 2n+1
suy ra 2n+1 =1
2n=0
n=0
Vay n=0 thi 4n+3 chia het cho 2n+1.
a,
thì bn lập luận
n+2 và n+ 17 đều chia hết cho n+2
=> ( n+17)-(n+2) chia hết cho n+2
=> 15 chia hết cho n+2
=> n+ 2 thuộc ước của 15
b, câu này thì bn nhân n+ 3 với 2 rồi trừ di như câu a nhé
c, thì nhân n+1 với 2
thế nhé !!!!
Phân tích ra là được mà bạn.
a, n+17=(n+2)+15
Để n+17 chia hết cho n+2=>15 chi hết cho n+2
=> n+2 thuộc U(15)
tìm ước của 15 rooif lâp bảng là được mà
Phần b làm tương tự còn phần c có nghĩa là mình CM được 2n-7 chia hết cho n+1 là ok.
\(2n^2+7⋮n+3\)\\(\Rightarrow2n\left(n+3\right)-6n+7⋮n+3\)
\(\Rightarrow2n.\left(n+3\right)-\left(6n-7\right)⋮n+3\)
\(\Rightarrow6.n-7⋮n+3\)
\(\Rightarrow6\left(n+3\right)-18-7⋮n+3\)
\(\Rightarrow6\left(n+3\right)-25⋮n+3\)
\(\Rightarrow25⋮n+3\)
bạn kẻ bảng nốt nha
ai ko hiểu thì nhắn tin qua cho mk nha
Ta có: n - 7 chia hết cho 2n + 3
Hay 2n - 14 chia hết 2n + 3
=> 2n + 3 - 17 chia hết 2n + 13
=> 17 chia hết 2n + 13
=> 2n + 13 E Ư(17) = {-1;1;-17;17}
Ta có:
Ta có: n - 7 chia hết cho 2n + 3
Hay 2n - 14 chia hết 2n + 3
=> 2n + 3 - 17 chia hết 2n + 13
=> 17 chia hết 2n + 13
=> 2n + 13 E Ư(17) = {-1;1;-17;17}
Ta có:
Vậy số nguyên tố n là 7