K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018
 

Giả sử a≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+ca (1) nên abc<3bc⇒a<3mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

P/s : Chúc bn hok giỏi!

 
 
5 tháng 1 2018

doan th khanh linh đáp số sai rồi

24 tháng 2 2017

a=3 , b=2 , c=11

1 tháng 2 2016

bai toan nay minh phai bo tay

29 tháng 10 2018

2) Vì p là số nguyên tố nên ta xét các trường hợp sau:

a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.

Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)

Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2

Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11

8 tháng 11 2018

a, +, p = 2

=> p + 2 = 2 + 2 = 4 ( là hợp số )      => loại

    +, p = 3

=> p + 2 = 3+ 2 = 5        ( là số nguyên tố )

     p + 10 = 3+ 10 = 13      ( là số nguyên tố )

     +, p > 3 => p có dạng 3k+1 hoặc 3k+2

TH1: p = 3k+1

=> p + 2 = 3k + 1 + 2 = 3k + 3 \(⋮\)3 ( là hợp số )             => loại

 TH2: p= 3k + 2

=> p + 10  = 3k + 2 + 10 = 3k + 12 \(⋮\)3 ( là hợp số )      => loại

           Vậy p = 3

b, +, p = 2

=> p + 10 = 2 + 10 = 12 ( là hợp số )      => loại

    +, p = 3

=> p + 10 = 3+ 10 = 13        ( là số nguyên tố )

     p + 20 = 3+ 20 = 23      ( là số nguyên tố )

     +, p > 3 => p có dạng 3k+1 hoặc 3k+2

TH1: p = 3k+1

=> p + 20 = 3k + 1 + 20 = 3k + 21 \(⋮\)3 ( là hợp số )             => loại

 TH2: p= 3k + 2

=> p + 10  = 3k + 2 + 10 = 3k + 12 \(⋮\)3 ( là hợp số )      => loại

          Vậy p = 3