\(\frac{2n+7}{n+1}\)là một số nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2016

phân số trên là số nguyên

=>2n+7 chia hết n+1

<=>[2n+7-2(n+1)] chia hết n+1

=>5 chia hết n+1

=>n+1\(\in\){1,-1,5,-5}

=>n\(\in\){0,-2,4,-6}

17 tháng 4 2019

\( Để A=\frac{n+10}{2n-8}\)CÓ GIÁ TRỊ NGUYÊN

\(\Rightarrow n+10⋮2n-8\)

\(\Rightarrow2\left(n+10\right)⋮2\left(n-4\right)\)

\(\Rightarrow n+10⋮n-4\)

\(\Rightarrow\left(n-4\right)+14⋮n-4\)

\(\Rightarrow n-4\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)

\(\Rightarrow n\in\left\{-10;-3;2;3;5;6;11;18\right\}\)

Vì n là số tự nhiên \(\Rightarrow n\in\left\{2;3;5;6;11;18\right\}\)

1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)4. Tìm số nguyên \(x\)sao...
Đọc tiếp

1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)

2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)

3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)

4. Tìm số nguyên \(x\)sao cho: \(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)

5. Tìm các số nguyên dương \(x,y\)thỏa mãn:\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)

6. Tìm các giá trị nguyên của \(n\) để \(n+8\)chia hết cho \(n+7\)

7. Tìm phân số lớn nhất sao cho khi chia các phân số \(\frac{28}{15};\frac{21}{10};\frac{49}{84}\)cho nó ta đều được thương là các số tự nhiên 

8. Cho phân số A= \(\frac{-3}{n-3}\left(n\inℤ\right)\)

a) Tìm số nguyên \(n\)để \(A\)là phân số 

b) Tìm số nguyên \(n\)để \(A\)là số nguyên 

9.Tìm các số nguyên \(x\)sao cho phân số \(\frac{4}{1-3x}\)có giá trị là số nguyên

10. Tìm tập hợp các số nguyên \(a\)là bội của 3:

\((\frac{-25}{12}.\frac{7}{29}+\frac{-25}{12}.\frac{22}{29}).\frac{12}{5}< a\le2\frac{1}{3}+3\frac{2}{3}\)

 

0
25 tháng 2 2016

2n+1=11

=>n=5

Ta có:11/1=11 là phân số tối giản

5 tháng 3 2016

de D co gia tri la mot so nguyen thi 2n+7 chia het cho n+3

1 tháng 5 2018

Ta có :

\(A=\frac{n+1}{n-3}=\frac{\left(n-3\right)+4}{n-3}=1+\frac{4}{n-3}\)

Để  \(A\in Z\)thì  \(\frac{4}{n-3}\in Z\)

\(\Rightarrow n-3\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\)

Ta có bảng sau :

n-31-12-24-4
n42517-1

Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)

1 tháng 5 2018

Để \(A=\frac{n+1}{n-3}\)thì \(n+1⋮n-3\)

Ta có: \(n+1⋮n-3\)

\(\Rightarrow n-3+4⋮n-3\)

\(\Rightarrow4⋮n-3\)

Vì \(n\inℤ\Rightarrow n-3\inℤ\)

Mà \(4⋮n-3\Rightarrow n-3\inƯ\)của 4\(=\)\(\pm1;\pm2;\pm4\)

T̉a có bảng giá trị:

n-31-12-24-4
n42517-1

Đối chiếu điều kiện n thuộc Z suy ra n\(=\)4;2;5;1;7;-1

17 tháng 4 2019

Để  \(A\in Z\Leftrightarrow n+3⋮2n-2\)

                   \(\Leftrightarrow2n+6⋮2n-2\)

                    \(\Leftrightarrow2n-2+8⋮2n-2\)

                    Mà \(2n-2⋮2n-2\)

\(\Rightarrow8⋮2n-2\)

\(\Rightarrow2n-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Lập bảng rùi tìm n nguyên 

               

Lê Tài Bảo Châu từ dòng thứ 2 không thể dùng dấu tương đương được, vì điều ngược lại chưa chắc đã đúng, với lại tìm n nguyên xong phải thử lại lọc ra các giá trị thỏa mãn.