Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5}{3n-1}\in Z\Rightarrow3n-1=Ư\left(5\right)\)
\(\Rightarrow\left[{}\begin{matrix}3n-1=-5\\3n-1=-1\\3n-1=1\\3n-1=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=-\dfrac{4}{3}\left(ktm\right)\\n=0\\n=\dfrac{2}{3}\left(ktm\right)\\n=2\end{matrix}\right.\)
Vậy \(n=\left\{0;2\right\}\)
a) Để 3 n − 3 là số nguyên thì 3 chia hết cho (n - 3) hay (n-3) ÎƯ(3)
=> ( n – 3) Î{-3;-1;1;3} => n Î{-6;-4;-2;0}
b) ( n – 1) ÎƯ (3) = {-3;-1;1;3} => n Î{-2;0;2;4}
c) (3n +1) ÎƯ (4) {-4;-2;-1;1;2;4}
Vì n Î Z nên sau khi tính ta thu được nÎ{-1; 1}
- Để \(\frac{12}{3n-1}\)là số nguyên \(\Rightarrow\)\(12⋮ 3n-1\)
\(\Rightarrow\)\(3n-1\inƯ\left(12\right)\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
- Ta có bảng giá trị:
\(3n-1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-4\) | \(4\) | \(-6\) | \(6\) | \(-12\) | \(12\) |
\(n\) | \(0\) | \(\frac{2}{3}\) | \(-\frac{1}{3}\) | \(1\) | \(-\frac{2}{3}\) | \(\frac{4}{3}\) | \(-1\) | \(\frac{5}{3}\) | \(-\frac{5}{3}\) | \(\frac{7}{3}\) | \(-\frac{11}{3}\) | \(\frac{13}{3}\) |
\(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(L\right)\) |
Vậy \(n\in\left\{-1; 0; 1\right\}\)
!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!
ta có n-1 ⋮ n-1
⇒3(n-1)⋮ n-1
⇒3n-3⋮ n-1
⇒(3n+2)-(3n-3)⋮ n-1
⇒5⋮ n-1
⇒(n-1)ϵ Ư(5)
n-1 | 1 | 5 | -1 | -5 |
n | 2 | 6 | 0 | -4 |
vậy n={2;6;0;-4}
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
a) Ta có \(A=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)
\(=\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot\dfrac{4\cdot6}{5\cdot5}\cdot...\cdot\dfrac{49\cdot51}{50\cdot50}\)
\(=\dfrac{2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot49\cdot51}{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot50\cdot50}\)
\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\cdot\dfrac{4\cdot5\cdot6\cdot...\cdot51}{3\cdot4\cdot5\cdot...\cdot50}\)
= \(\dfrac{2}{50}\cdot17=\dfrac{17}{25}\)
b) Vì n nguyên nên 3n - 1 nguyên
Để phân số \(\dfrac{12}{3n-1}\) có giá trị nguyên thì 12 ⋮ ( 3n - 1 ) hay ( 3n - 1 ) ϵ Ư( 12 )
Ư( 12 ) = { \(\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\) }
Lập bảng giá trị
3n - 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | \(\dfrac{2}{3}\) | 0 | 1 | \(\dfrac{-1}{3}\) | \(\dfrac{3}{4}\) | \(\dfrac{-2}{3}\) | \(\dfrac{5}{3}\) | -1 | \(\dfrac{7}{3}\) | \(\dfrac{-5}{3}\) | \(\dfrac{13}{3}\) | \(\dfrac{-11}{3}\) |
Vì n nguyên nên n ϵ { 0; 1; -1 }
Vậy n ϵ { 0; 1; -1 } để phân số \(\dfrac{12}{3n-1}\) có giá trị nguyên
Để A là số nguyên thì 3n-1 thuộc Ư(12)
=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
mà n nguyên
nên n thuộc {0;1;-1}