K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2023

a.Để A là phân số thì n+1≠0 ⇔n≠-1

b.Để A là số nguyên thì 6⋮(n+1)⇔(n+1)ϵƯ(6)={1;-1;2;-2;3;-3;6;-6}

Ta có bảng sau: 

n+1 1 -1 2 -2 3 -3 6 -6
n 0 -2 1 -3 2 -4 5 -7

Vậy để A nhận giá trị nguyên thì xϵ{0;-2;1;-3;2;-4;5;-7}

19 tháng 1 2018

Để \(\frac{n+3}{n-2}\) là số nguyên thì n + 3 \(⋮\) n - 2

<=> (n - 2) + 5 \(⋮\) n - 2

<=> 5 \(⋮\) n - 2 (vì n - 2 \(⋮\) n - 2)

<=> n - 2 \(\in\) Ư(5) = {1; -1; 5; -5}

Lập bảng giá trị:

n - 21-15-5
n317-3
Chọn/LoạiChọnChọnChọnChọn

Vậy với n \(\in\) {3; 1; 7; -3} thì phân số \(\frac{n+3}{n-2}\) là số nguyên.

19 tháng 1 2018

\(M=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)   \(ĐKXĐ:n\ne2\)

để \(M\in Z\)thì \(n\in Z\)

mà \(1\in Z\forall R\) nên \(\frac{5}{n-2}\in Z\)

\(\Leftrightarrow n-2\inƯ\left(5\right)\)

\(\Leftrightarrow n-2\in\left\{\pm1;\pm5\right\}\)

\(n-2=-1\Leftrightarrow n=1\) ( thoả mãn)

\(n-2=1\Leftrightarrow n=3\) 

+  \(n-2=-5\Leftrightarrow n=-3\)

\(n-2=5\Leftrightarrow n=7\)

vậy \(n\in\left\{1;\pm3;7\right\}\)thì \(M\in Z\)

a) Với \(n\in Z\)thì để \(\frac{5}{n-4}\)có giá trị là số nguyên

\(\Rightarrow5⋮n-4\)

\(\Rightarrow n-4\)là ước của \(5\)

Mà các ước của \(5\) là : \(5;1;-1;-5\)

Ta có bảng sau :

   \(n-4\)\(5\)\(1\)\(-1\)\(-5\)
   \(n\)\(9\)\(5\) \(3\)\(\)\(-1\)
\(KL\)\(TM\)\(TM\)\(TM\)\(TM\)

Vậy \(n\in\left\{9;5;3;-1\right\}\)thì \(\frac{5}{n-4}\)có giá trị là số nguyên.

b) Với \(n=5\)

\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{5-4}=5\)

Với \(n=-1\)

\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{\left(-1\right)-4}=-1\)

10 tháng 8 2017

a, (5n+2)9 = (2n+7)7

  45n+18=14n+49

  31n=31

  n=1

28 tháng 3 2018

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)

\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)

\(\Leftrightarrow45n+18=14n+49\)

\(\Leftrightarrow31n=31\)

\(\Leftrightarrow n=1\)

n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)

Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.

\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)

Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

Ta có bảng:

2n + 71-131-31
n-3-412-19
KLTMTMTMTM

 

Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)

c

8 tháng 5 2017

Câu 1:

a) Gọi biểu thức đó là A

Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vài công thức ta có ;

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{19}-\frac{1}{20}\)

\(A=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)

b) Gọi biểu thức đó là S

\(S=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right).....\left(-\frac{2016}{2017}\right)\)

\(S=-\left(\frac{1.2.3.4....2016}{2.3.4.5....2017}\right)=-\left(\frac{1}{2017}\right)=-\frac{1}{2017}\)

Rất tiếc nhưng phần c mink ko biết làm, để mink nghĩ đã

Câu 2 :

a) \(\frac{5}{n+1}\)

Để 5/n+1 là số nguyên thì n + 1 là ước nguyên của 5

n+1=1 => n = 0

n + 1 =5 => n = 4

n+1=-1 => n =-2

n+1 = -5 => n = -6

b) \(\frac{n-6}{n+1}=\frac{n+1-7}{n+1}=1-\frac{7}{n+1}\)

Để biểu thức là số nguyên thì n + 1 là ước của 7

n + 1 = 1 => n= 0

n+1=7=> n =6

n + 1 = -7 => n =-8

n+1=-1 => n= -2

c)  \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+6}{n+1}=2+\frac{6}{n+1}\)

Để biểu thức là số nguyên thì n+1 là ước của 6

n+1 =1-16-6
n = 0-25-7

Từ đó KL giá trị n

CÂU 3 :

b) \(A=\frac{x-1}{x+2}=\frac{x+2-3}{x+2}=1-\frac{2}{x+2}\)

x+2=1-12-2
x =-1-30-4

Rồi bạn thử từng x khi nào thấy A = 2 thì chọn nha!!

Ai thấy đúng thì ủng hộ nha !!!

8 tháng 5 2017

câu 1 :

a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19+20}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)

\(=\frac{1}{2}+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{19}+\frac{1}{19}\right)-\frac{1}{20}\)

\(=\frac{1}{2}+0+0+0+...+0-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)

b) \(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{2017}-1\right)\)

\(=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{2016}{2017}\right)\)

Vì phép nhân có thể rút gọn 

Nên \(-1.\frac{-1}{2017}=\frac{1}{2017}\)

Câu 2 : 

a) Ta có : \(\frac{5}{n+1}\)

Để \(\frac{5}{n+1}\in Z\Leftrightarrow5⋮n+1\Leftrightarrow n+1\inƯ_{\left(5\right)}=\){ -1; 1; -5; 5 }

Với n + 1 = -1 => n =  -1 - 1 = - 2 ( TM )

Với n + 1 = 1 => n = 1 - 1 = 0 ( TM )

Với n + 1 = - 5 => n = - 5 - 1 = - 6 ( TM )

Với n + 1 = 5 => n = 5 - 1 = 4 ( TM )

Vậy Với n \(\in\){ - 2; 1; - 6; 4 } thì 5 \(⋮\)n + 1

Còn câu b nữa tương tự nha

" TM là thỏa mản "

AH
Akai Haruma
Giáo viên
17 tháng 4 2023

Lời giải:

$A=\frac{3n+5}{3n-2}=\frac{(3n-2)+7}{3n-2}=1+\frac{7}{3n-2}$

Để $A$ nguyên thì $\frac{7}{3n-2}$ nguyên. 

Với $n$ nguyên thì điều này xảy ra khi $7\vdots 3n-2$

$\Rightarrow 3n-2\in\left\{\pm 1; \pm 7\right\}$

$\Rightarrow n\in\left\{1; \frac{1}{3}; 3; \frac{-5}{3}\right\}$

Vì $n$ nguyên nên $n\in\left\{1;3\right\}$